

The team

Wei Liu

Jonathan Booher

Ashwin Balakrishna

Vladislav Isenbaev



Zhenli Zhang

2

Content

00	Introduction
01	Motivation
02	Diffusion: Trajectory Generation
03	RL: Motion Selection
04	Examples
05	Limitations and Conclusion

Introduction

Alex's Intro

- Motto: Standing on the shoulders of giants
- Approach: to combine Academia and Industry Research
 - Academia: Ph.D., lecturer on theory of ML/DL
 - Industry: TLM, ML Research (Behavior)

LOMONOSOV MOSCOW STATE UNIVERSITY

AD and SDV

- **AD** = Autonomous Driving: the *task*
- **SDV** = Self-Driving Vehicle: the *car*
- AD is one of the most complex and difficult tasks, both theoretically and practically

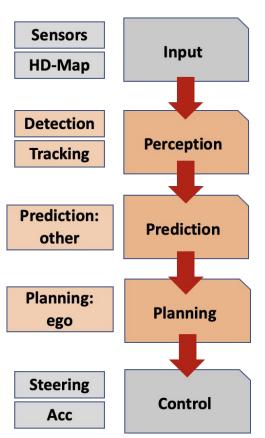
Image <u>source</u>

<u>Safety</u> of SDV and other agents on the road is crucial

6

AD: ML Stack of Technologies

- The main **software** parts are the so-called **P**³:
 - Perception, Prediction and Planning
- Hardware parts:
 - Input: Sensors
 - Output: Control (steering, acceleration)
- High-Definition Map as the helper
 - HD-Map contains info about the road



O

SDV: Sensors

- Various sensors are used:
 - LIDAR
 - Radar
 - Ultra Sound
 - Cameras (x N)

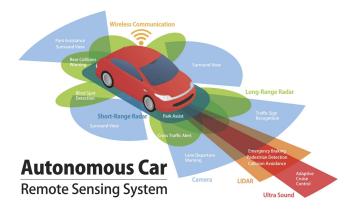
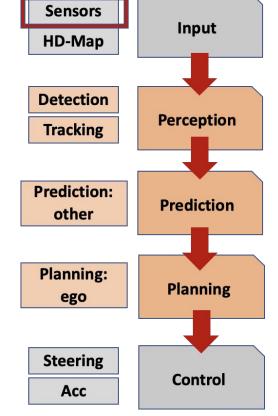


Image source

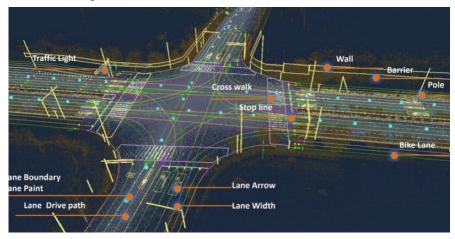
- Problems:
 - Expensive
 - Hard to synchronize



Q

AD: HD-Map

- Helpful for prediction and planning
 - Contains information about a road:
 - Lanes, crosswalks, traffic lights, etc.
- Problems:
 - Every company has its own format
 - Significant overhead



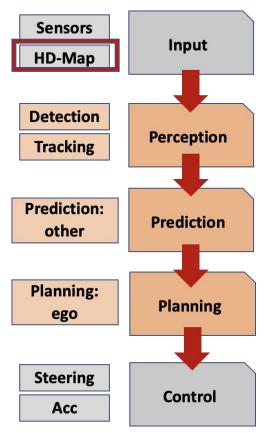
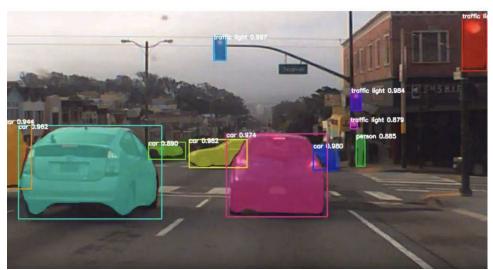


Image <u>source</u>

AD: Detection

- The first step of the Perception part:
 - Detection (segmentation, depth-estimation, etc.) of the objects around
- Problems:
 - Long tail (small and unusual objects) and anomalies



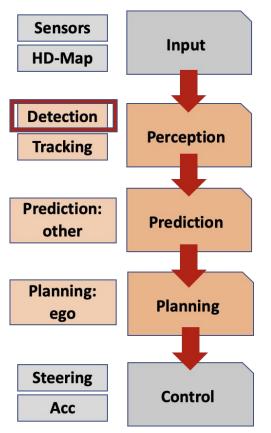
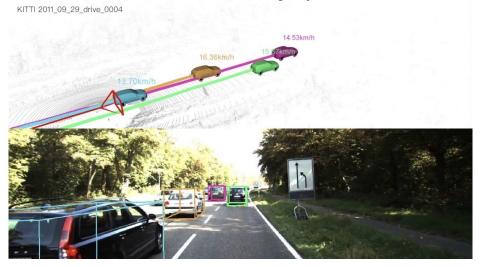


Image source

AD: Tracking

- The *second* step of the Perception part:
 - Tracking of the detected objects and estimation of their coordinates for the Prediction part
- **Problems:**
 - Track association of flickering objects



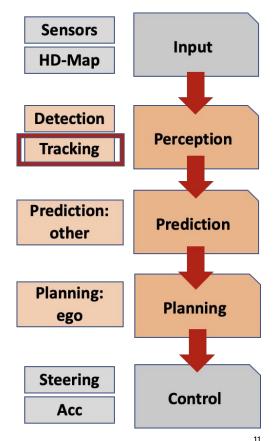
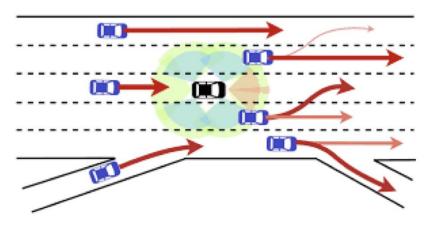
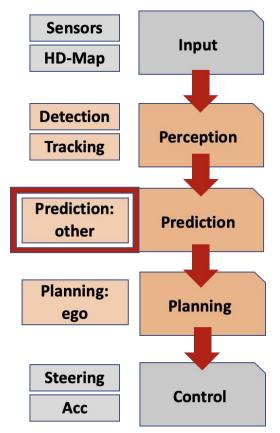


Image source

AD: Prediction

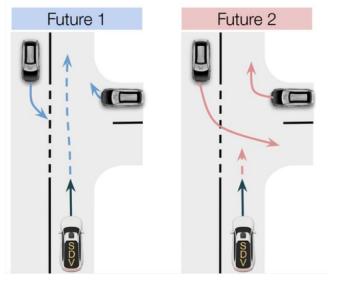
- Future trajectories prediction of all surrounding objects based on the tracking history and HD-Map
 - Usually, 1-10 second
- Problems:
 - Multi-modality for recall

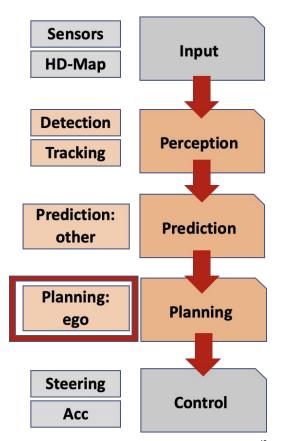




AD: Planning

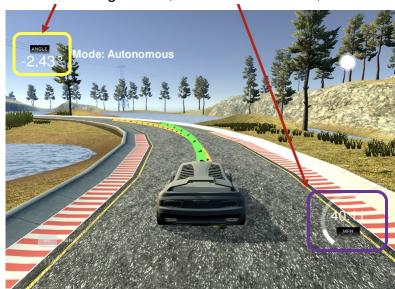
- Planning of SDV future actions based on the predictions and HD-Map
- Problems:
 - Consistent joint prediction and planning





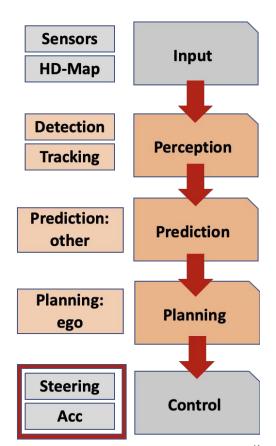
SDV: Control

- Realization and control of SDV actions based on motion plan
 - Steering control, acceleration control, etc.



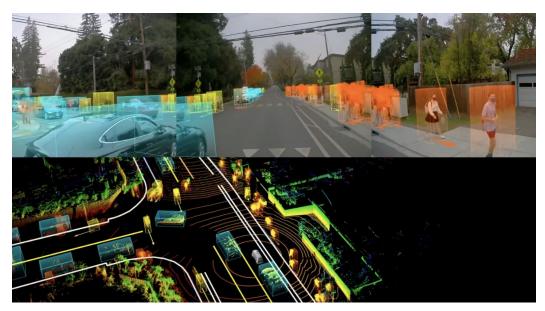
Problems:

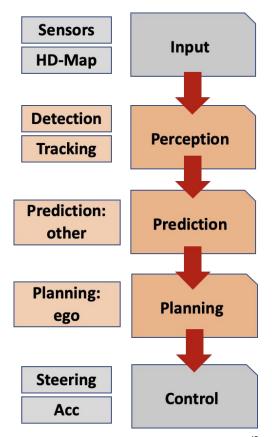
Dynamic and kinematic limitations



Autonomy Stack at Nuro

An Overview of the Nuro Autonomy Stack —
Albert Meixner, Nuro's Head of Software





Motivation

Content

Problem 1: Road Agents

Trustworthy predictions for use in both Prediction and Simulation

Problem 2: AV Motion

Flexible and safe selection process allowing ego proposals of any source

Our Approach

Better training, evaluation and reasoning leading to safer driving!

Better Agents Prediction/Simulation

Problem

Usage of IL-based Prediction model for other agents can lead to unreasonable proposals due to distribution shift

Historical Approach

Use only heuristic-based agents

Better Solution

Target prediction model to better distribution coverage/recall (not only precision) with some ways to use it for getting good minADE

Long-Horizon Planning by Selection

Problem

Decisions have long-term, delayed consequences

Historical Approach

Use long-term **predictions** to approximate long-horizon planning

Better Solution

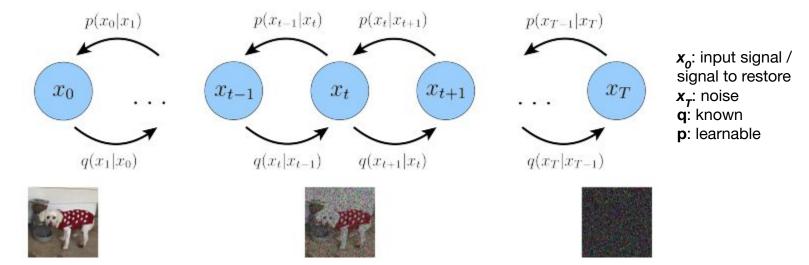
Learn a model that takes into account an expectation over all futures. Selection to narrow down the search space

Diffusion models: Background and Trajectory Generation

What is a Diffusion Model?

Diffusion Model: it is a generative model (markovian hierarchical variational autoencoder)

- Adding step by step some portion of noise as a diffusion analogy
- Forward diffusion process: adding noise by $q(x_t|x_{t-1})$. Also known as *encoding*
- Reverse diffusion process: de-noising by p(x, |x). Also known as decoding



Success of Diffusion Models

https://imagen.research.google/

https://openai.com/dall-e-2

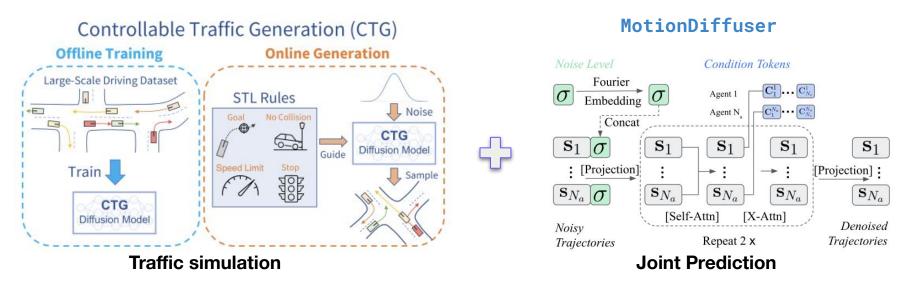
https://www.midjourney.com/

Text2Image (along with audio, video) generation: Done! (sorry, GANs (2))

But what about other tasks?

Diffusion Models for Autonomous Driving

But what about other tasks?



We are combining both functionalities: prediction and simulation

DTG: Main Goals

(01)

Development of Trajectory Generation module capable of a good distribution coverage

DTG = Diffusion-based Trajectory Generator 02

Improvement of closed-loop simulations

DTG: Main Goals

Development of Trajectory Generation module (decoder) capable of a good distribution coverage Is theoretically ensured by using Variational Diffusion Model (VDM) by explicit ELBO (~NLL) optimization

DTG: Main Goals

Will provide more useful signal for RL-based trainings

Improvement of closed-loop simulations

DTG: Features

(01)

Learn diverse behaviors with distribution that matches real-world driver behaviors

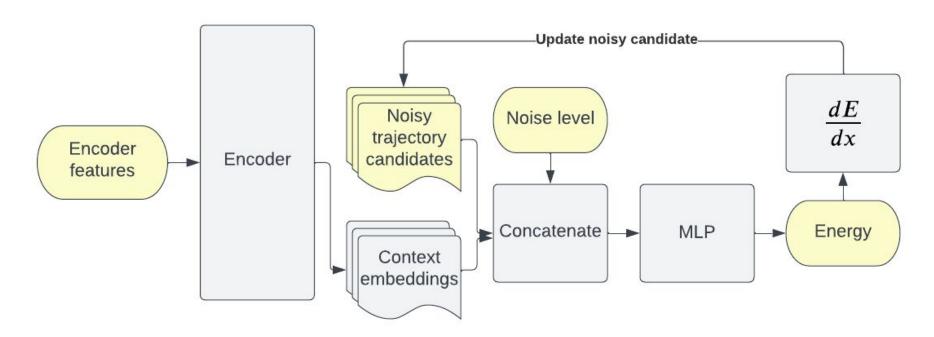
(02)

Provide good NLL, minADE, and other Prediction-aware metrics (03)

Lead to stable, consistent and realistic simulation

VDM for Trajectory Generation

DTG: Current Architecture

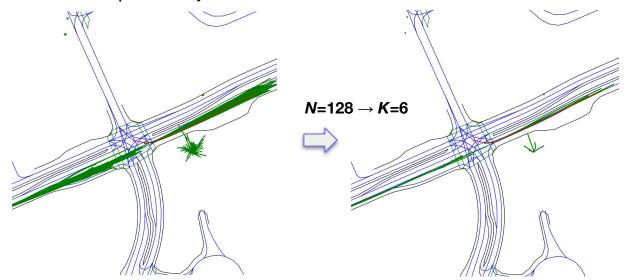


Note: we can use **different encoders** (lstm-based, transformer-based)

0

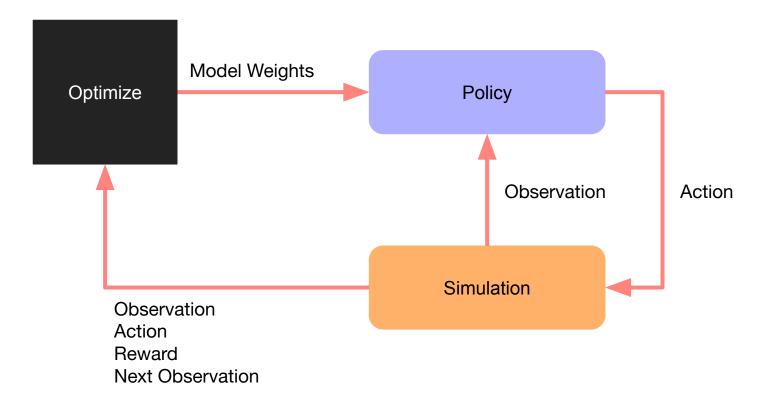
DTG: Ensuring good minADE

- Vanilla VDM models the distribution of trajectories, the sampled N trajectories not necessarily have 1 close to GT
- We can mitigate it through clustering for getting a good minADE
 - And even probability as a size of cluster!

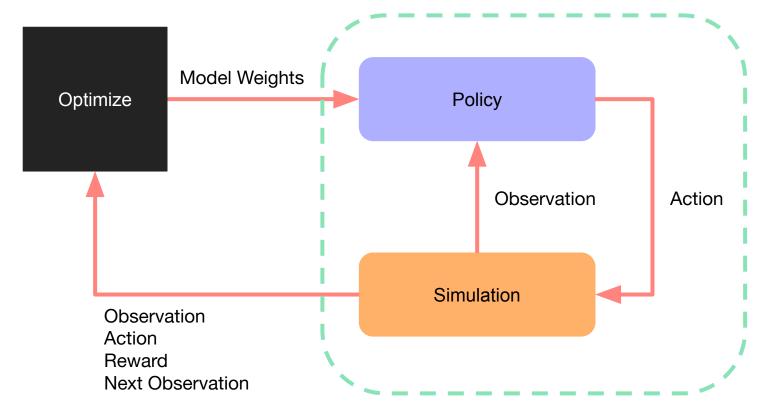


RL: Background and Motion Selection

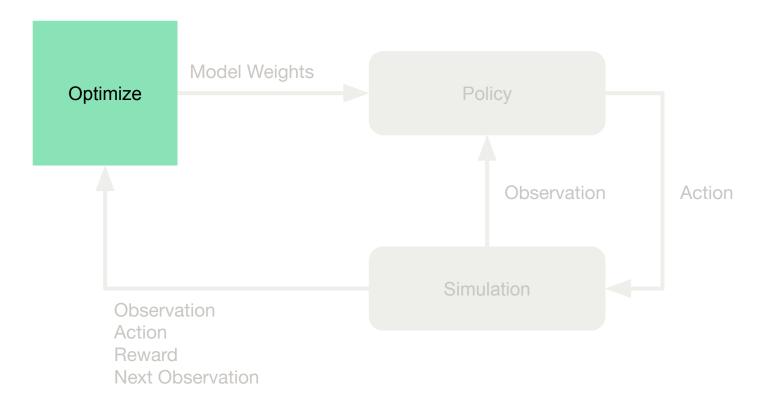
What is Deep RL?



What is Deep RL?



What is Deep RL?



How to Optimize?

Objective:

maximize reward under the policy while limiting probability of risky events

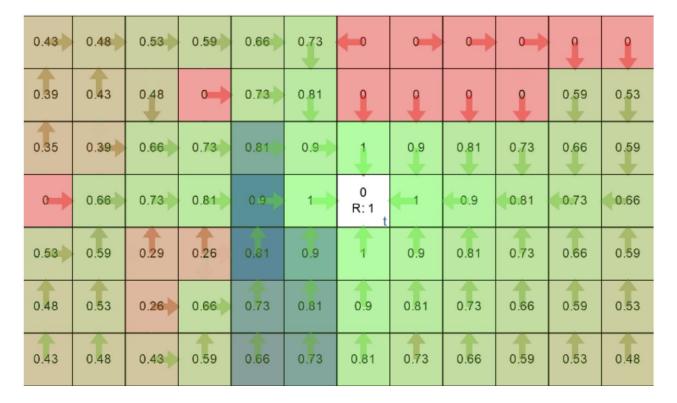
Learn:

state-action Q value function

Optimize:

iteratively improve Q for all s and a

What does this look like?



RL for Selection

Why Motion Selection?

(01)

Discrete problem. Rank trajectories rather than produce them.

RLMS = RL for Motion Selection 02

Low-level decision making well handled by trajectory generation modules

Why Motion Selection?

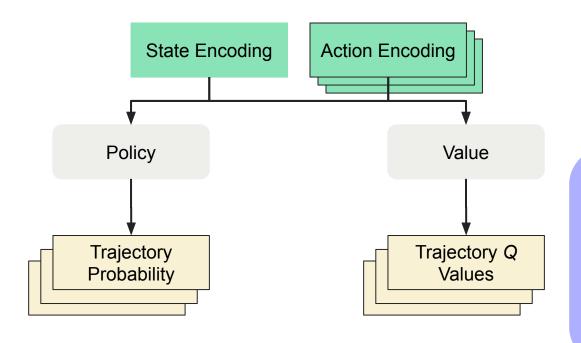
(01)

Discrete problem. Rank trajectories rather than produce them.

Allow heuristics and domain knowledge to filter the trajectory space for RL 02

Low-level decision making well handled by trajectory generation modules

Anatomy of the RLMS Model: Basic RL



Q values are **dense** rewards:

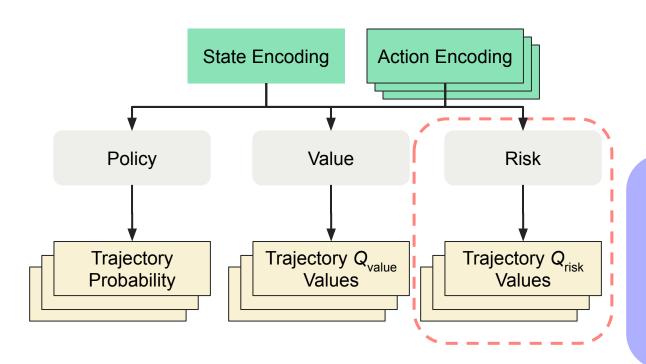
- Reward 1
- Reward 2
- Reward 3
- etc

Basic RL: Limitations

01

No concrete notion or **constraint** on safety

Anatomy of the RLMS Model: Risk Sensitive RL



Risk values are **sparse** rewards:

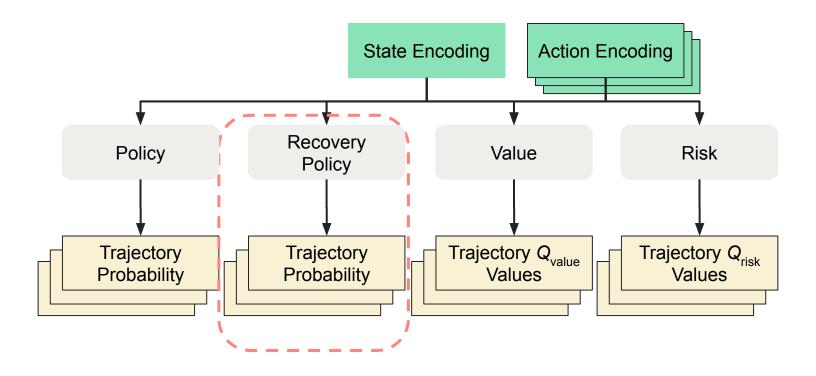
- Risk 1
- Risk 2
- Risk 3
- etc

Risk Sensitive RL: Limitations

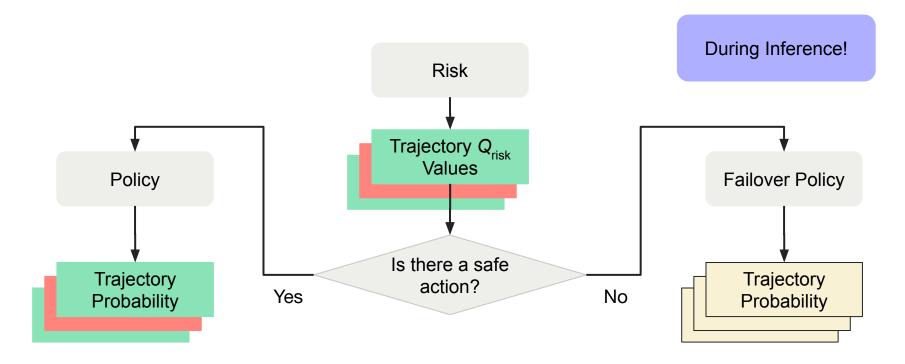
01

No **hard constraint** on safety

Anatomy of the RLMS Model: Constrained RL



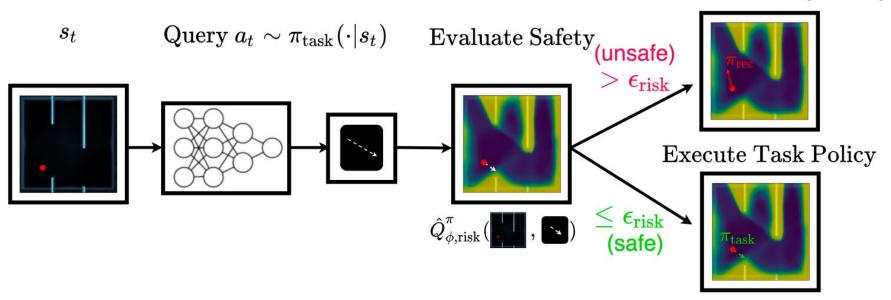
Anatomy of the RLMS Model: Constrained RL



Anatomy of the RLMS Model: Recovery RL

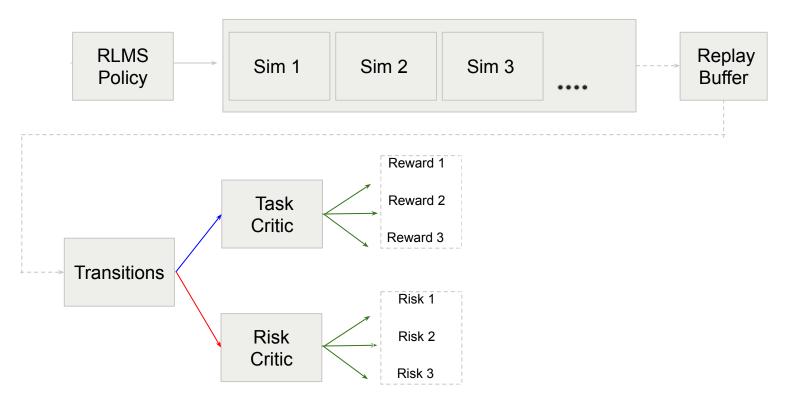
During Inference!

Execute Recovery Policy

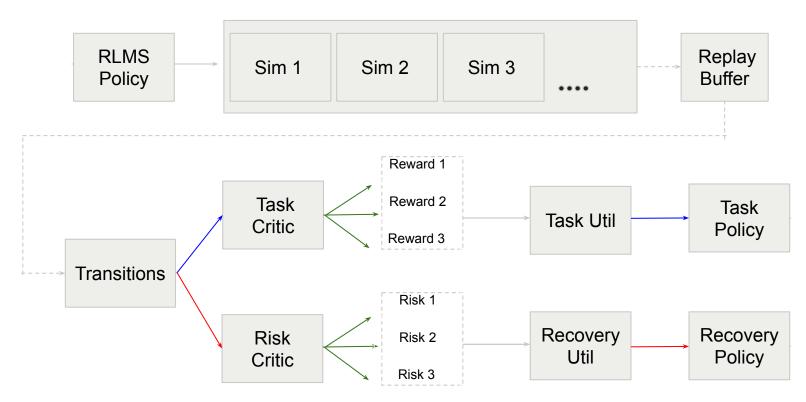


First execute current RLMS policy in the simulator and store trajectories

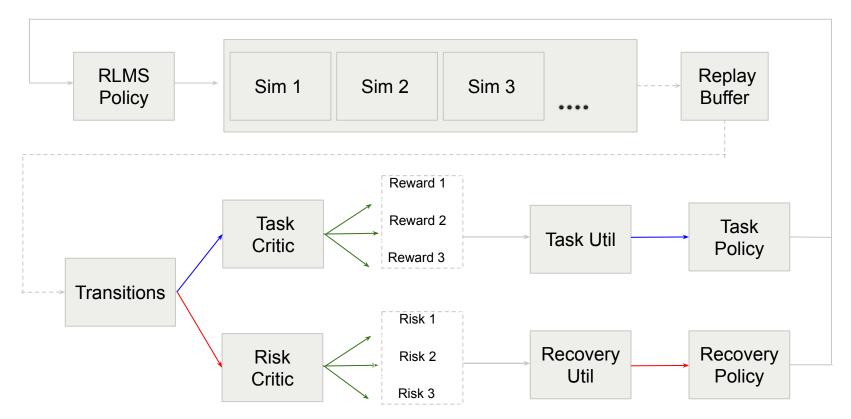
Use saved trajectories to train task critic and risk critic



Combine task and risk critic values into utilities and train policies for each



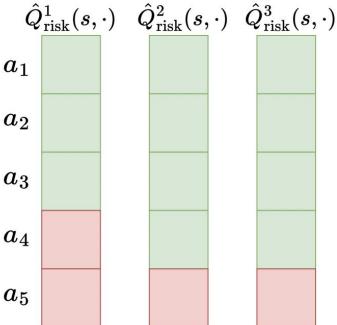
Combine task and recovery policy to get RLMS policy



Constructing RLMS Mixed Policy with Recovery RL

The final RLMS policy uses a combination of both the task and recovery policies to sample actions.

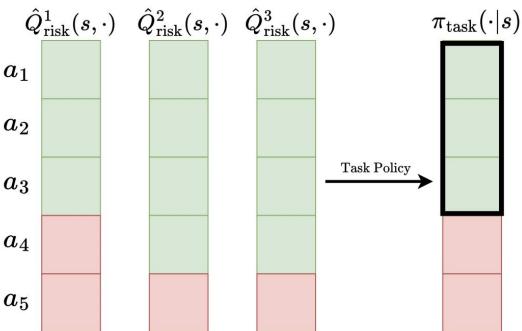
We first score all possible actions with each of our risk critics



Constructing RLMS Mixed Policy with Recovery RL

The final RLMS policy uses a combination of both the task and recovery policies to sample actions.

If there exist safe actions then sample from re-normalized task policy

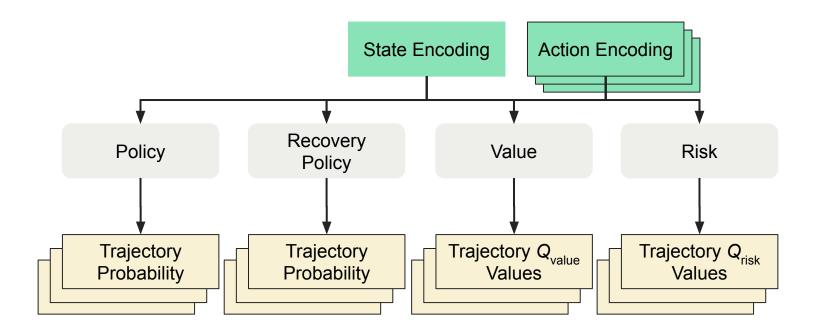


Constructing RLMS Mixed Policy with Recovery RL

The final RLMS policy uses a combination of both the task and recovery policies to sample actions.

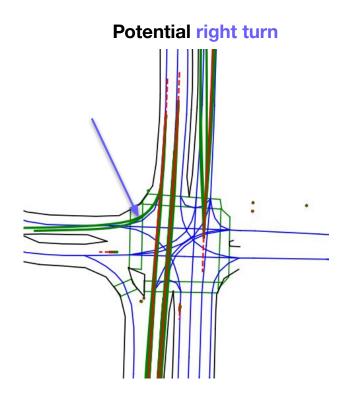
Otherwise sample from recovery policy

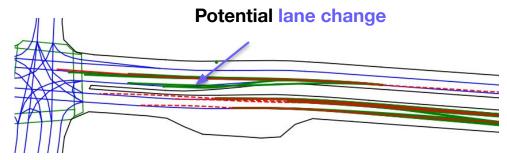
Anatomy of the RLMS Model

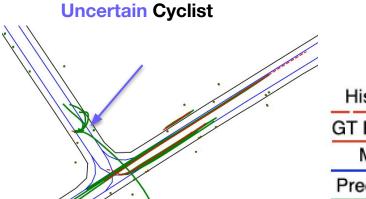


Examples

04







History GT Future

Мар

Prediction

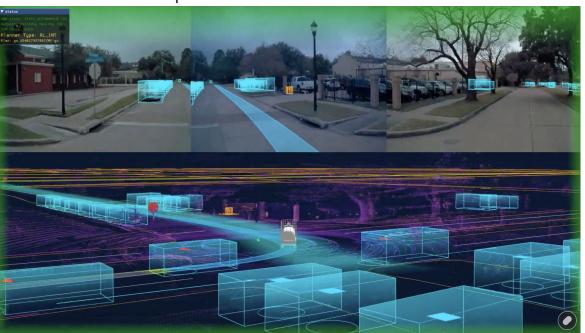
OK: Vehicle overtaking NuroBot on the left

Top: Onroad log

Bottom: Sim

Video link: https://www.youtube.com/watch?v=FE7IR11uVB8

OK: Occluded Unprotected Left

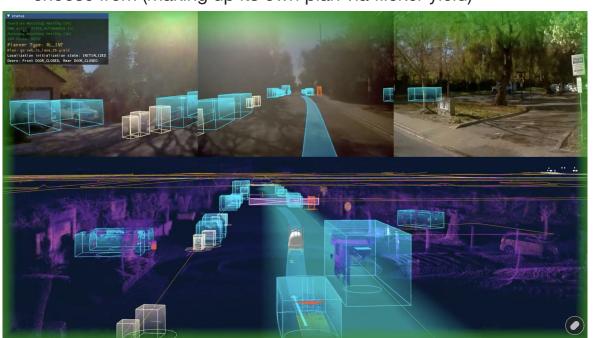


Top: Onroad log

Bottom: Sim

Video link: https://www.youtube.com/watch?v=scblFi50oA8

Not OK: Problems with stability - selection is a combination of plans because we don't have a single initial good source to choose from (making up its own plan via flicker yield)



Top: Onroad log

Bottom: Sim

Limitations and conclusions

DTG: Limitations

(01)

Sampling-only inference (hard to use in the production)

02

Latency-performance tradeoff

03)

Non-deterministic simulation

RLMS: Limitations

(01)

Still no *hard* constraint on safety

(02)

Rare sparse events still challenging to learn (i.e. collisions)

(03)

Sample inefficient – takes many simulation steps to learn

Conclusions

(01)

Diffusion-based models help to match the distributions, not points (02)

Learning selection provides long-horizon reasoning

(03)

Recent academic SotA can be used for practical tasks to add more safety!

Useful Links

- [MVHS]: Autonomy: Introduction of ML for High School (presentation)
- [BDD]: Autonomy Challenges (presentation, video)
- [BAIR]: Autonomy: Open Questions (presentation)
- [CVPR]: Behavior Modeling and Learned Motion Selection for Safe Driving (presentation)
- YT: Nuro Tech Talks (playlist)

