nuro

Scaling Laws for Autonomous Driving Models

How much and reasonable we can scale up models in Autonomy

Aleksandr Petiushko (apetiushko@nuro.ai) ML Research 12/14/2023

ML4AD 2023 Symposium

nuro

Acknowledgements

Brian Yao

Zhuwen Li

Content

0.	Motivation
1.	Scaling Laws
2.	Behavior model overview
3.	Scaling Laws in Behavior
4.	Perception model overview
5.	Scaling Laws in Perception
6.	Conclusion

Motivation

Content

Use case 1: Behavior

Behavior Models: usually smaller compared to Vision ones. Size vs Overfitting?

Use case 2: Perception

Approach

Perception Models: usually large enough. Can we go bigger? Practically?

Let's ablate: Models Capacity and Training Datasets size Under the Fixed Computational Budget

Scaling Laws

Scaling Laws in AD: Main Goals

Goal 1

How <u>better</u> can we go with scaling up data/models? Let's do it by ablation studies with different model capacities and training dataset sizes

Scaling Laws in AD: Main Goals

Let's include in the ablations the conditioning on the number of training iterations that will help with a computation budget (02)
Goal 2
How <u>practical</u> is the scaling?

Introduction

Computer vision^[1,2] and Large language^[3,4] models have shown great success by scaling to **billion/trillion-parameter** models and training with **web-scale data**.

However, can **self-driving** industry also benefit from this?

At Nuro, we hope to provide *statistical* answers to the following questions:

- 1. Do we need larger models onboard, and how large would it be?
- 2. Do we need **more training data**, and how many more do we need?
- 3. What's the best scale under fixed budget?

Nomenclature

- *N* Model capacity: number of parameters
- *D* Training dataset size: number of samples
- *S* Number of training iterations
- *C* Training budget: cost in FLOPs

 $C = FLOPs(N,S) \propto N \times S$

- *L_{train/eval}* Training or Eval loss metrics
 - We assume the loss is a function of *N*, *D*, and *S*

 $L^*(N^*,D^*,S^*)$

Problem Formulation

Two types of **scaling laws**:

- Model performance scaling law:
 - How does model performance improve with <u>model</u> and <u>data</u> size scales \uparrow / \downarrow ?

- **Optimal** model scaling law:
 - What is the optimal scale at different <u>costs</u>?

Let's try these simple patterns...

Behavior Encoder Preliminaries & Experiment Details

Behavior Encoder

We study the scaling laws for some standard tf-based behavior **encoder** model.

Experiments Details

Model capacities(N): 1X, 4X, 8X, 16X, 32XTypical dataset sizes(D): 1X, 2X, 5X, 7X

ld	BE capacity (<i>N</i>)	Batch size (K _{GPU} * B _{GPU})	
1	1X	1K * 4B	
2	4X	1K * 4B	Baseline
3	8X	2K * 2B	model comig
4	16X	2K * 2B	
5	32X	4K * 1B	

Experiment details:

- Fixed total **batch size** = 4*K*B
- LR: Same Scheduler
- Training steps (S):
 - All models are trained for S epochs, using K/2K/4K 40G GPUs A100
 - Training time varies from ~1 day to ~14 days
- Metrics: BE train and evaluation losses + prediction and planning metrics

Scaling Laws: Behavior

→ Model Performance Scaling Law

- → Optimal Model Scaling Law Method 1
- → Optimal Model Scaling Law Method 2
- → Scaling Law with Behavior Eval

Let's use as an **optimal** model the <u>best checkpoint</u> of every experiment:

$$L(N,D) = \min_{\forall S \le \max(S)} L(N,D,S)$$

Loss function is modeled as^[3]:</sup>

$$L(N, D) = E + A * N^{-\alpha} + B * D^{-\beta}$$

- *E* Irreducible error for theoretically <u>infinite</u> model capacity and data
- A Weight of imperfect model caused by insufficient capacity
- *B* Weight of imperfect model caused by insufficient data
- α , β Model's power law parameters

Collected the (L, N, D) triplets from experiments

Fitted the model performance scaling function L(N, D)

Conclusion:

- Better performance: with the larger *N* and *D*
- Fixing *L*, one can find the needed (*N*,*D*) profile

Fitted Performance Scaling Function L(N, D), and profile curve (black) at 1% loss improvement

Experiment points (L, N, D)

Collected the (L, N, S) triplets from experiments

Fitted the model performance scaling function L(N, S)

Conclusion:

• Better performance: with the larger *N* and *S*

We can even compare L(N, S) for the Train and Eval losses!

Conclusion: with larger model and longer training the train/eval loss gap is smaller.

Ideal setting is nice but...

what about **practical limitations**?

Scaling Laws: Behavior

- → Loss vs Capacity, Data & Steps
- → Optimal Model Scaling Law Method 1
- → Optimal Model Scaling Law Method 2
- → Scaling Law with Behavior Eval

- Most realistic setting: the largest dataset, **BE 7X data** (*D*)
- Start with the **training loss** at varying estimated FLOPs C

Then: at each FLOPs point, get the lower envelope of the training loss, as the "optimal capacity".

- Note 1: for different *C* the **optimal capacity** can belong to **different models**
- Note 2: every **point** corresponds to some **#** of **training steps** *S*, and **color** to **capacity** *N*

Approach: to use the lower envelope to fit a power law between *N* and *C*

• Linear regression in log scale:

 $\log(N) = 0.397 * \log(C) + 1.253$

• In linear scale:

 $N = 3.501 * C^{0.397}$

Then: estimate best model capacity N^* at a **given cost budget** C^* , e.g.:

• $C^* = 1e18 \longrightarrow N^* \approx 72X$

Approach: to use the lower envelope to fit a power law between *S* and *C*

• Linear regression in log scale:

 $\log(S) = 0.603 * \log(C) - 8.877$

• In linear scale:

 $S = 1.4 \mathrm{e}{-4} * C^{0.603}$

Then: estimate best training steps S^* at a **given cost budget** C^* , e.g.:

• $C^* = 1e18 \longrightarrow S^* \approx 10.06M$

Note: S can be the same for different C

Can similar scaling laws be applied to different setting,

e.g. Eval Loss?

Observations:

- Smaller models diverge after training for a while, while larger models are not even fully converged
 - May relate to the Double Descent / Broken Neural Scaling Laws^[5].
- Small models (1x and 4x) converge fast but unstable, larger models (32x) converge too slow.

Approach: to use the lower envelope to fit a power law between *N* and *C*

• Linear regression in log scale:

 $\log(N) = 0.469 * \log(C) - 1.314$

• In **linear** scale:

 $N = 0.269 * C^{0.469}$

Then: estimate best model capacity N^* at a **given** cost budget C^* , e.g.:

• $C^* = 1e18 \longrightarrow N^* \approx 112X$

Note: compare with train loss: $N^* \approx 72X$

Approach: to use the lower envelope to fit a power law between *S* and *C*

• Linear regression in log scale:

 $\log(S) = 0.531 * \log(C) - 6.311$

• In linear scale:

 $S = 1.8 \mathrm{e}{-3} * C^{0.531}$

Then: estimate best training steps S^* at a **given cost budget** C^* , e.g.:

• $C^* = 1e18 \longrightarrow S^* \approx 6.5M$

Note: compare with train loss: $S^* \approx 10.06M$

Can similar scaling laws be applied to

downstream metrics?

Optimal Model Scaling Laws with Agent Trajectory Prediction

Metric: Min Average Displacement Error (minADE) @10 seconds.

Track types: Vehicle, Pedestrian, Cyclist.

Vehicle	Cyclist	Pedestrian
$N = 0.234 * C^{0.473}$	$N = 0.088 * C^{0.496}$	$N = 0.721 * C^{0.443}$

Scaling Laws: Behavior

- → Loss vs Capacity, Data & Steps
- → Scaling Law Method 1
- → Scaling Law Method 2
- → Scaling Law with Behavior Eval

IsoFLOP Profiles - Train Loss

Method 1: Varying FLOPs along x-axis Method 2: Fix FLOPs to find optimal model Algorithm:

- 1. Define multiple *C* levels (e.g. 8)
- 2. For each *C* level, plot the profile curves
- 3. Find the model capacity *N* that has lowest training loss *L* (shown by the arrows)
- 4. Fit the power law between optimal *N* and *C*

IsoFLOP Profiles - Train Loss

Approach: to use the lower envelope to fit a power law between *N* and *C*

• Linear regression in **log** scale:

 $\log(N) = 0.422 * \log(C) + 0.259$

• In linear scale:

 $N = 1.296 * C^{0.422}$

Then: estimate best model capacity N^* at a given cost budget C^* , e.g.:

•
$$C^* = 1e18 \longrightarrow N^* \approx 76X$$

IsoFLOP Profiles - Train Loss

Approach: to use the lower envelope to fit a power law between *S* and *C*

• Linear regression in log scale:

 $\log(S) = 0.578 * \log(C) - 7.883$

• In linear scale:

 $S = 3.8 \mathrm{e}{-4} * C^{0.578}$

Then: estimate best training steps S^* at a **given** cost budget C^* , e.g.:

• $C^* = 1e18 \longrightarrow S^* \approx 9.69M$

IsoFLOP Profiles - Eval Loss

Similarly we can get the IsoFLOP Profiles for eval loss.

Note that some points are missed because we didn't have a evaluation run of that model capacity at that FLOPs level.

Some findings:

- The **32x** model performed **better** on **low FLOPs** side, because it learned fast at the beginning of training
- It in general takes longer to train larger models
- The 32x model is likely not trained to its best

IsoFLOP Profiles - Eval Loss

Approach: to use the lower envelope to fit a power law between *N* and *C*

• Linear regression in **log** scale:

 $\log(N) = 0.478 * \log(C) - 1.768$

• In linear scale:

 $N = 0.171 * C^{0.478}$

Then: estimate best model capacity N^* at a **given cost budget** C^* , e.g.:

• $C^* = 1e18 \longrightarrow N^* \approx 103X$

Note: compare with train loss: $N^* \approx 76X$

IsoFLOP Profiles - Eval Loss

Approach: to use the lower envelope to fit a power law between *S* and *C*

- Linear regression in log scale: $\log(S) = 0.522 * \log(C) - 5.857$
- In linear scale:

 $S = 2.9 \mathrm{e}{-3} * C^{0.522}$

Then: estimate best training steps S^* at a **given cost budget** C^* , e.g.:

• $C^* = 1e18 \longrightarrow S^* \approx 7.09M$

Note: compare with train loss: $S^* \approx 9.69M$

Method 1 vs Method 2

Both: find the best model at different C and yield similar results

- Method 2 directly shows the profiles at specified cost level
- Method 2 has better correspondence between train and eval predictions

	Capacity	Steps	Estimated Capacity @ C=1e18	Estimated steps @ C=1e18
Method 1, train loss	$N = 3.501 * C^{0.397}$	$S = 1.4 \mathrm{e}{-4} * C^{0.603}$	72X	10.06M
Method 2, train loss	$N = 0.269 * C^{0.469}$	$S = 1.8 \mathrm{e}{-3} * C^{0.531}$	76X	9.69M
Method 2, eval loss	$N = 1.296 * C^{0.422}$	$S = 3.8\mathrm{e}{-4} * C^{0.578}$	103X	7.09M
Method 1, eval loss	$N = 0.171 * C^{0.478}$	$S = 2.9 \mathrm{e}{-3} * C^{0.522}$	112X	6.5M

Note: for $C^* = 1e18$

- Best model capacity is ~72X 112X, and the best training steps is ~6.5-10 Million
- As a comparison, the **baseline configuration** is a **4X** encoder trained for **~270K** steps at a level of C ≈1.4e15

Scaling Laws: Behavior

- → Loss vs Capacity, Data & Steps
- → Scaling Law Method 1
- → Scaling Law Method 2
- → Scaling Law with Behavior Eval

Behavior Eval Tasks

The **BE** is **shared** by many behavior **tasks**.

Prediction task:

- ~175km (~15 hrs) total driving
- Major metrics: minADE, minFDE, Miss Rate, Overlap Rate, Long/Lat Errors...

Planning task:

- ~125km (~10 hrs) total driving
- Major metrics: Rigorously defined "Passes"

Experiment details:

- 1. For each experiment, we export the final checkpoint
- 2. Initialize the Prediction and Planning models from it
- 3. Freeze the BE and finetune model decoders

Behavior Eval Tasks

Behavior Eval Metrics Relative Change

Observations:

- Smaller models (<8x) scale well when dataset is small (<5X)
 - Then start to overfit
- 16x model scales almost linearly with dataset size
- **32x** model significantly **overfits** when dataset is **small**, it also **didn't fully converge** within limited training epochs when dataset is larger

Behavior Eval With the Model Change

Baseline model:

• ~1.4e15 estimated FLOPs, trained for ~2 days

Scaled model:

~10X FLOPs^{*}, trained for ~4 days, use scaling laws to select the best model:

 ,				
Target flops	Method 1 w/ train loss	Method 1 w/ eval loss	Method 2 w/ train loss	Method 2 w/ eval loss
1e16	11.8X	12.4X	11.0X	11.9X
1.4e16	13.5X	14.5X	12.7X	13.9X
2e16	15.5X	17.2X	14.7M	16.3X

• Let's select the nearest candidate - **16X** BE model

Behavior Eval With the Model Change

Planning Passes Improvements

* w/o optimization, the onboard latency ~2X with the 16X model.

Key observations:

- Scaling law can be transferred to different behavior model architectures
- Advanced model (16x vs 4x) benefits more (from 2% to 5%) from scaling .

Perception Model Preliminaries & Experiment Details

Scaling up Convolutional Neural Network

Perception task in Autonomous Driving: **2D object detection Experiment**: ConvNeXt as backbone in an object detection module

Figure cited from the ConvNeXt paper^[6]

Experiments Settings

Perception model scale configuration

Note: Memory usage is mostly aligned with latency

Scaling Laws: Perception

Collected the (L, N, D) triplets

Fitted the model performance scaling function L(N, D)

mAP is used as the model performance metric

Conclusion:

- Better performance: with the larger N and D
- Fixing *L*, one can find the needed (*N*,*D*) profile

structure transformed and tra

Exactly the same conclusions as for Behavior!

Optimal Model Scaling Law

The upper envelope of performance:

- 1X model: superior performance in a low FLOPs regime
- Further experiment is needed (massive cost!!!) in order to benefit from larger model

Similar conclusions as for Behavior

Data Scale: Replicating ConvNext Paper

- Model scaling works but requires large data scale
 - At 7.5%: improvement is smaller and plateaued
 - At **50%**: improvement is **similar**, but it was costly to complete training for all of the models
- Latency, model size, and cost increase extremely fast

Conclusion

Next Steps

Better understand width vs depth difference, LR impact (02)

Explore double descent and broken neural scaling laws (03)

Verify the predicting power of Scaling Laws in the >1e20 computing budget regime

Limitations

Scaling laws are biased towards the **extremum** models: can **lose** similar "good" but an **order less complex** model

Scaling laws **may not generalize** to different evaluation datasets and metrics, especially with data scales up^[7] 03

Improvement: additional, but cost: multiplicative

Need really reliable infrastructure and fast experimentation pipeline

Conclusions

Scaling laws are **applicable** in Autonomous Driving (02)

Different extrapolation methods have their own pros and cons, but mostly **coincide in the order** (03)

Even **w/o** significant **model chang**e, we can do **better** with longer training / more capacity^[8]

[8] E.g., by 8x more cost

- ~7% less minADE (Prediction)
- ~3% more Pass Rate (Planner)

Main Conclusion

Scaling

A very **trivial way** of adding a handful of percents (like ensembling in kaggle competitions) that can be even **forecasted** in advance.

And, it is **not a game changer**: slight marginal improvements by the extremely high cost / orders more data (having 1K times bigger models/GPUs/data would not give you the clear preference over other companies).

Still need better ideas :)

Visit Our Poster Today!

https://ml4ad.github.io/#papers

Multi-Constraint Safe RL with Objective Suppression for Safety-Critical Applications

Zihan Zhou University of Toronto Vector Institute footoredo@gmail.com Jonathan Booher Nuro Inc. jbooher@nuro.ai **Wei Liu** Nuro Inc. w@nuro.ai

Aleksandr Petiushko Nuro Inc. apetiushko@nuro.ai

Animesh Garg University of Toronto Vector Institute Nvidia garg@cs.toronto.edu

