CNN Robustness research

Application to face detectors and face ID systems

Aleksandr Petiushko

Lomonosov Moscow State University, Ph.D. Huawei, Video Intelligence Team Leader

4th of February, 2021

Intelligent Systems and Data Science Technology Center

- Intelligent Systems and Data Science Technology Center
- ONN great success

- Intelligent Systems and Data Science Technology Center
- ONN great success
- CNN lack of robustness

- Intelligent Systems and Data Science Technology Center
- ONN great success
- CNN lack of robustness

- Intelligent Systems and Data Science Technology Center
- ONN great success
- ONN lack of robustness
- \bullet ℓ_0 -based adversaries
- Adversarial examples in real world

- Intelligent Systems and Data Science Technology Center
- ONN great success
- CNN lack of robustness
- \bullet ℓ_0 -based adversaries
- Adversarial examples in real world
- Adversarial attack on face detection

- Intelligent Systems and Data Science Technology Center
- ONN great success
- CNN lack of robustness
- \bullet ℓ_0 -based adversaries
- Adversarial examples in real world
- Adversarial attack on face detection
- Adversarial attack on face ID

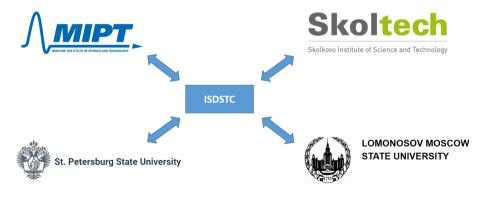
- Intelligent Systems and Data Science Technology Center
- ONN great success
- CNN lack of robustness
- \bullet ℓ_0 -based adversaries
- Adversarial examples in real world
- Adversarial attack on face detection
- Adversarial attack on face ID
- Defense from adversarial examples in real world

- Intelligent Systems and Data Science Technology Center
- ONN great success
- CNN lack of robustness
- \bullet ℓ_0 -based adversaries
- Adversarial examples in real world
- Adversarial attack on face detection
- Adversarial attack on face ID
- Operation of the property o
- Black-box face restoration

4th of February, 2021

Intelligent Systems and Data Science Technology Center: scientific collaboration

Russian Research Institute \to Moscow Research Center \to Intelligent Systems and Data Science Technology Center



Human expert VS CNN

ImageNet¹ (1000-class image DB)

- Human expert top-5 error²: 5.1%
- CNN top-5 error³: 2.0%

¹http://www.image-net.org/

²Andrej Karpathy blog

³Touvron H. et al. "Fixing the train-test resolution discrepancy." 2019

⁴http://vis-www.cs.umass.edu/lfw/

⁵Kumar N. et al. "Attribute and simile classifiers for face verification." 2009

⁶Deng J. et al. "Arcface: Additive angular margin loss for deep face recognition." 2018

Human expert VS CNN

ImageNet¹ (1000-class image DB)

- Human expert top-5 error²: 5.1%
- CNN top-5 error³: 2.0%

Labeled Faces in the Wild⁴ (famous faces DB)

- Human expert verification error⁵: 2.47%
- CNN verification error⁶: 0.17%

¹http://www.image-net.org/

²Andrej Karpathy blog

³Touvron H. et al. "Fixing the train-test resolution discrepancy." 2019

⁴http://vis-www.cs.umass.edu/lfw/

⁵Kumar N. et al. "Attribute and simile classifiers for face verification." 2009

⁶Deng J. et al. "Arcface: Additive angular margin loss for deep face recognition." 2018

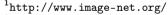
Human expert VS CNN

$[{\sf ImageNet^1}\ (1000 ext{-class image DB})]$

- Human expert top-5 error²: 5.1%
- CNN top-5 error³: 2.0%

Labeled Faces in the Wild⁴ (famous faces DB)

- Human expert verification error⁵: 2.47%
- CNN verification error⁶: 0.17%



²Andrej Karpathy blog

³Touvron H. et al. "Fixing the train-test resolution discrepancy." 2019

⁴http://vis-www.cs.umass.edu/lfw/

⁵Kumar N. et al. "Attribute and simile classifiers for face verification." 2009

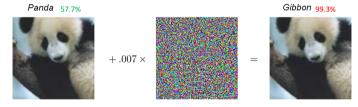
⁶Deng J. et al. "Arcface: Additive angular margin loss for deep face recognition." 2018

CNN instability

• It turned out that one can add to the input almost invisible to the human eye perturbation in such a way that this perturbation completely changes the CNN output

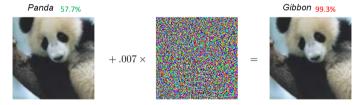
CNN instability

- It turned out that one can add to the input almost invisible to the human eye perturbation in such a way that this perturbation completely changes the CNN output
- E.g. classification result from "Panda" changes to "Gibbon"



CNN instability

- It turned out that one can add to the input almost invisible to the human eye perturbation in such a way that this perturbation completely changes the CNN output
- E.g. classification result from "Panda" changes to "Gibbon" 7

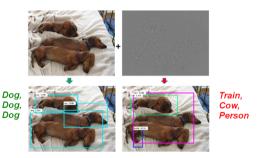


Such almost invisible perturbations leading to changing of the CNN output are called adversarial examples (or adversarial attacks on CNN)

⁷Image credit: https://arxiv.org/pdf/1412.6572.pdf

Different types of NN to attack

Detection and segmentation⁸ CNNs:

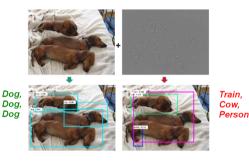


 $^{^9}$ Jia R. et al. "Adversarial examples for evaluating reading comprehension systems." 2017

⁸Xie C. et al. "Adversarial examples for semantic segmentation and object detection." 2017

Different types of NN to attack

Detection and segmentation⁸ CNNs:



And even NN for text processing (question answering systems)⁹:

Article: Super Bowl 50

Paragraph: "Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager, Ouarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV."

Question: "What is the name of the quarterback who was 38 in Super Bowl XXXIII?"

Original Prediction: John Elway Prediction under adversary: Jeff Dean

⁸Xie C. et al. "Adversarial examples for semantic segmentation and object detection." 2017 ⁹ Jia R. et al. "Adversarial examples for evaluating reading comprehension systems." 2017

Definitions

- $x \in B = [0,1]^{C \times M \times N}$ input image $C \times M \times N$, where C number of color channels (1 for grayscale, 3 for RGB)
- y correct class label for input x
- \bullet θ parameters of CNN-classifier
- $L(\theta, x, y)$ loss function
- f(x) output of classifier (recognized class), and we are trying to make f(x) = y when training

Definitions

- $x \in B = [0,1]^{C \times M \times N}$ input image $C \times M \times N$, where C number of color channels (1 for grayscale, 3 for RGB)
- y correct class label for input x
- \bullet θ parameters of CNN-classifier
- $L(\theta, x, y)$ loss function
- f(x) output of classifier (recognized class), and we are trying to make f(x) = y when training
- $r \in B = [0,1]^{C \times M \times N}$ the additive perturbation for the input x

Definition of adversarial example and robustness

Goal of adversarial attack

To change the output of the classifier f from the correct class label to the incorrect one by means of minimal in terms of some norm ℓ_p perturbation r:

Definition of adversarial example and robustness

Goal of adversarial attack

To change the output of the classifier f from the correct class label to the incorrect one by means of minimal in terms of some norm ℓ_p perturbation r:

- $|r|_p \to \min$ so as:
- 2 f(x) = y (initially the output is correct)
- 3 $f(x+r) \neq y$ ("break" the CNN output with perturbation r)
- 4 $x + r \in B$ (still in the space of correct images)

Definition of adversarial example and robustness

Goal of adversarial attack

To change the output of the classifier f from the correct class label to the incorrect one by means of minimal in terms of some norm ℓ_p perturbation r:

- $|r||_p \to \min$ so as:
- 2 f(x) = y (initially the output is correct)
- **3** $f(x+r) \neq y$ ("break" the CNN output with perturbation r)

Classifier robustness

To find the perturbation class $S(x, f) \subseteq B$ so as the classifier will not change its output:

$$f(x+r) = f(x) = y \quad \forall r \in S(x,f)$$

Most attacks on CNN are done in terms of ℓ_{∞} -norm which is correlated with the process of how a human eye perceive the visual information:

$$||x||_{\infty} = \max_{i} |x_i|, x = (x_1, \ldots, x_n) \in \mathbb{R}^n$$

¹⁰Goodfellow I. et al. "Explaining and harnessing adversarial examples." 2014

¹¹Kurakin A. et al. "Adversarial examples in the physical world." 2016

¹²Madry A. et al. "Towards deep learning models resistant to adversarial attacks." 2017

Most attacks on CNN are done in terms of ℓ_{∞} -norm which is correlated with the process of how a human eye perceive the visual information:

$$||x||_{\infty} = \max_{i} |x_i|, x = (x_1, \ldots, x_n) \in \mathbb{R}^n$$

• Fast Gradient Sign Method¹⁰ (FGSM): $r = \epsilon \cdot \text{sign}(\nabla_x L(\theta, x, y))$

¹⁰Goodfellow I. et al. "Explaining and harnessing adversarial examples." 2014

¹¹Kurakin A. et al. "Adversarial examples in the physical world." 2016

¹²Madry A. et al. "Towards deep learning models resistant to adversarial attacks." 2017

Most attacks on CNN are done in terms of ℓ_{∞} -norm which is correlated with the process of how a human eve perceive the visual information:

$$||x||_{\infty} = \max_{i} |x_i|, x = (x_1, \ldots, x_n) \in \mathbb{R}^n$$

- Fast Gradient Sign Method¹⁰ (FGSM): $r = \epsilon \cdot \text{sign}(\nabla_x L(\theta, x, y))$
- Iterative FGSM (I-FGSM)¹¹ / Projected Gradient Descent (PGD)¹² (Π_B the projection operation on B): $x^{t+1} = \prod_{B} (x^t + \alpha \cdot \text{sign} \nabla_x L(\theta, x^t, v)), \quad x^0 = x, \alpha = \epsilon / T, t < T$

¹⁰Goodfellow I. et al. "Explaining and harnessing adversarial examples." 2014

¹¹Kurakin A. et al. "Adversarial examples in the physical world." 2016

¹²Madry A. et al. "Towards deep learning models resistant to adversarial attacks." 2017

Most attacks on CNN are done in terms of ℓ_{∞} -norm which is correlated with the process of how a human eve perceive the visual information:

$$||x||_{\infty} = \max_{i} |x_i|, x = (x_1, \ldots, x_n) \in \mathbb{R}^n$$

- Fast Gradient Sign Method¹⁰ (FGSM): $r = \epsilon \cdot \text{sign}(\nabla_x L(\theta, x, y))$
- Iterative FGSM (I-FGSM)¹¹ / Projected Gradient Descent (PGD)¹² (Π_B the projection operation on B): $x^{t+1} = \prod_{B} (x^t + \alpha \cdot \text{sign} \nabla_x L(\theta, x^t, v)), \quad x^0 = x, \alpha = \epsilon/T, t < T$
- Momentum I-FGSM (MI-FGSM):

$$g^{t+1} = \mu \cdot g^t + \frac{\nabla_x L(\theta, x^t, y)}{||\nabla_x L(\theta, x^t, y)||_1}, x^{t+1} = \Pi_B(x^t + \alpha \cdot \operatorname{sign}(g^{t+1})), \quad x^0 = x, g^0 = 0$$

¹²Madry A. et al. "Towards deep learning models resistant to adversarial attacks." 2017 - + 3 - + 3 - + 3 - + 3

4th of February, 2021

¹⁰Goodfellow I. et al. "Explaining and harnessing adversarial examples." 2014

¹¹Kurakin A. et al. "Adversarial examples in the physical world." 2016

Comparison of FGSM-like attacks

	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-152	Inc-v3 _{ens3}	Inc-v3 _{ens4}	IncRes-v2 _{ens}
	FGSM	72.3*	28.2	26.2	25.3	11.3	10.9	4.8
Inc-v3	I-FGSM	100.0*	22.8	19.9	16.2	7.5	6.4	4.1
	MI-FGSM	100.0*	48.8	48.0	35.6	15.1	15.2	7.8
	FGSM	32.7	61.0*	26.6	27.2	13.7	11.9	6.2
Inc-v4	I-FGSM	35.8	99.9*	24.7	19.3	7.8	6.8	4.9
	MI-FGSM	65.6	99.9*	54.9	46.3	19.8	17.4	9.6
	FGSM	32.6	28.1	55.3*	25.8	13.1	12.1	7.5
IncRes-v2	I-FGSM	37.8	20.8	99.6*	22.8	8.9	7.8	5.8
	MI-FGSM	69.8	62.1	99.5*	50.6	26.1	20.9	15.7
	FGSM	35.0	28.2	27.5	72.9*	14.6	13.2	7.5
Res-152	I-FGSM	26.7	22.7	21.2	98.6*	9.3	8.9	6.2
	MI-FGSM	53.6	48.9	44.7	98.5*	22.1	21.7	12.9

Based on it, MI-FGSM is one of the most successful ones.

 \bullet $\ell_{\infty}\text{-based}$ adversaries are imperceptible, but require all pixels to change

¹³Papernot N. et al. "The limitations of deep learning in adversarial settings." 2015

¹⁴Su J. et al. "One pixel attack for fooling deep neural networks." 2017

- ℓ_{∞} -based adversaries are imperceptible, but require all pixels to change
- In the physical world it is not realistic we can only change a part of the scene

¹³Papernot N. et al. "The limitations of deep learning in adversarial settings." 2015

¹⁴Su J. et al. "One pixel attack for fooling deep neural networks." 2017

- \bullet $\ell_{\infty}\text{-based}$ adversaries are imperceptible, but require all pixels to change
- In the physical world it is not realistic we can only change a part of the scene
- So the ℓ_0 -based attack could be more appropriate: $||x||_0 = \sum_{i=1}^n \mathbf{1}_{x_i \neq 0}$

¹³Papernot N. et al. "The limitations of deep learning in adversarial settings." 2015

 $^{^{14}\}mathrm{Su}$ J. et al. "One pixel attack for fooling deep neural networks." 2017

- \bullet $\ell_{\infty}\text{-based}$ adversaries are imperceptible, but require all pixels to change
- In the physical world it is not realistic we can only change a part of the scene
- So the ℓ_0 -based attack could be more appropriate: $||x||_0 = \sum_{i=1}^n \mathbf{1}_{x_i \neq 0}$
- Jacobian-based Saliency Map Attack (JSMA)¹³ and even more extreme case One Pixel attack¹⁴ are the examples of such ℓ_0 -based attacks where the maximal amount of pixels to be changed is minimized

¹³Papernot N. et al. "The limitations of deep learning in adversarial settings." 2015

¹⁴Su J. et al. "One pixel attack for fooling deep neural networks." 2017

- \bullet $\ell_{\infty}\text{-based}$ adversaries are imperceptible, but require all pixels to change
- In the physical world it is not realistic we can only change a part of the scene
- So the ℓ_0 -based attack could be more appropriate: $||x||_0 = \sum_{i=1}^n \mathbf{1}_{x_i \neq 0}$
- Jacobian-based Saliency Map Attack (JSMA) 13 and even more extreme case One Pixel attack 14 are the examples of such ℓ_0 -based attacks where the maximal amount of pixels to be changed is minimized

One Pixel attack

	Automobile	
Cat	Deer	Frog
Horse	Ship	Truck

Original image (dog)

¹³Papernot N. et al. "The limitations of deep learning in adversarial settings." 2015

¹⁴Su J. et al. "One pixel attack for fooling deep neural networks." 2017

Adversarial examples in real world: EOT

- Don't have the control on the image pixels after the photo ⇒ the only option is to change the object appearance itself
- Expectation Over Transformation (EOT)¹⁵ to the rescue takes into account the transformations of objects in the real world, e.g.:
 - Different scaling factors
 - Random translation and rotation
 - Luminosity / contrast variation, noise etc

¹⁵Athalye A. et al. "Synthesizing robust adversarial examples." 2017

Adversarial examples in real world: EOT

- Don't have the control on the image pixels after the photo ⇒ the only option is to change the object appearance itself
- Expectation Over Transformation (EOT)¹⁵ to the rescue takes into account the transformations of objects in the real world, e.g.:
 - Different scaling factors
 - Random translation and rotation
 - Luminosity / contrast variation, noise etc
- So for the object x in the real world the task is to find the adversarial perturbation r taking into account transformation $g \in T$:

EOT

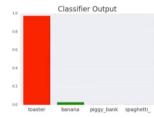
Find $\arg\min_{r} \mathbb{E}_{g \sim T}[P(y|g(x+r))]$ w.r.t.:

- $2x + r \in B$

¹⁵Athalye A. et al. "Synthesizing robust adversarial examples." 2017

Examples of physical adversarial examples

Attack on ImageNet obects¹⁶:

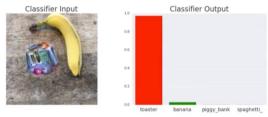


¹⁶Brown T. et al. "Adversarial patch." 2017

¹⁷Eykholt K. et al. "Robust physical-world attacks on deep learning models." 2017

Examples of physical adversarial examples

Attack on ImageNet obects¹⁶:



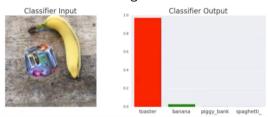
Attack on road signs¹⁷:

¹⁶Brown T. et al. "Adversarial patch." 2017

¹⁷Eykholt K. et al. "Robust physical-world attacks on deep learning models." 2017

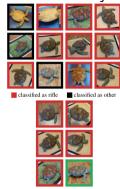
Examples of physical adversarial examples

Attack on ImageNet obects¹⁶:



Attack on road signs¹⁷:

³D adversarial objects:



classified as turtle

¹⁶Brown T. et al. "Adversarial patch." 2017

¹⁷Eykholt K. et al. "Robust physical-world attacks on deep learning models." 2017

• ℓ_0 -optimization (mask-based) + EOT: <u>the must</u>

- ℓ_0 -optimization (mask-based) + EOT: the must
- Total Variation (TV) loss penalty for the perturbation to be non-smooth (in the real world there is no distinct pixel gradients):

$$TV(x) = \sum_{i,j} \sqrt{(x_{i,j+1} - x_{i,j})^2 + (x_{i+1,j} - x_{i,j})^2}$$

- ℓ_0 -optimization (mask-based) + EOT: the must
- Total Variation (TV) loss penalty for the perturbation to be non-smooth (in the real world there is no distinct pixel gradients):

$$TV(x) = \sum_{i,j} \sqrt{(x_{i,j+1} - x_{i,j})^2 + (x_{i+1,j} - x_{i,j})^2}$$

• Non-Printability Score (NPS) — penalty for the perturbation colors that are out of the generator device (e.g., printer) limited gamut. E.g. if $G \subset [0,1]^3$ — limited device gamut, then the loss for using the pixel $q_0 \in [0,1]^3$:

$$NPS(q_0) = \Pi_{q \in G} ||q - q_0||_2$$

- ℓ_0 -optimization (mask-based) + EOT: the must
- Total Variation (TV) loss penalty for the perturbation to be non-smooth (in the real world there is no distinct pixel gradients):

$$TV(x) = \sum_{i,j} \sqrt{(x_{i,j+1} - x_{i,j})^2 + (x_{i+1,j} - x_{i,j})^2}$$

• Non-Printability Score (NPS) — penalty for the perturbation colors that are out of the generator device (e.g., printer) limited gamut. E.g. if $G \subset [0,1]^3$ — limited device gamut, then the loss for using the pixel $q_0 \in [0,1]^3$:

$$NPS(q_0) = \prod_{q \in G} ||q - q_0||_2$$

• Additional color adjustments (e.g. generator device provides not color c, but some its modification m(c))

Initially the so called Camouflage Art¹⁸
was used to avoid the leading at that time
Viola-Jones face detection system

¹⁸Feng R. et al. "Facilitating fashion camouflage art." 2013

¹⁹Sharif M. et al. "Accessorize to a crime: Real and stealthy attacks on state-of-the-art-face recognition." 2016

- Initially the so called Camouflage Art¹⁸
 was used to avoid the leading at that time
 Viola-Jones face detection system
- It was just the makeup crafted manually to fool the Haar detector

¹⁸Feng R. et al. "Facilitating fashion camouflage art." 2013

[₩]**₽**\$\$

¹⁹Sharif M. et al. "Accessorize to a crime: Real and stealthy attacks on state-of-the-art-face recognition." 2016

- Initially the so called Camouflage Art¹⁸
 was used to avoid the leading at that time
 Viola-Jones face detection system
- It was just the makeup crafted manually to fool the Haar detector
- Pioneering work by Sharif et al.¹⁹ proposed to use printed adversarial glasses

¹⁸Feng R. et al. "Facilitating fashion camouflage art." 2013

¹⁹Sharif M. et al. "Accessorize to a crime: Real and stealthy attacks on state-of-the-art-face recognition." 2016

- Initially the so called Camouflage Art¹⁸ was used to avoid the leading at that time Viola-Jones face detection system
- It was just the makeup crafted manually to fool the Haar detector
- Pioneering work by Sharif et al. 19 proposed to use printed adversarial glasses
- It uses ℓ_0 -optimization + EOT + TV + NPS + color adjustments

¹⁸Feng R. et al. "Facilitating fashion camouflage art." 2013

¹⁹Sharif M. et al. "Accessorize to a crime: Real and stealthy attacks on state-of-the-art-face recognition." 2016

- Initially the so called Camouflage Art¹⁸
 was used to avoid the leading at that time
 Viola-Jones face detection system
- It was just the makeup crafted manually to fool the Haar detector
- Pioneering work by Sharif et al.¹⁹ proposed to use printed adversarial glasses
- It uses ℓ_0 -optimization + EOT + TV + NPS + color adjustments
- But it was used for closed-set recognition (a few predefined person ID for training) and for old generation FaceID NN

¹⁸Feng R. et al. "Facilitating fashion camouflage art." 2013

W 2016

¹⁹Sharif M. et al. "Accessorize to a crime: Real and stealthy attacks on state-of-the-art-face recognition." 2016

- Initially the so called Camouflage Art¹⁸
 was used to avoid the leading at that time
 Viola-Jones face detection system
- It was just the makeup crafted manually to fool the Haar detector
- Pioneering work by Sharif et al.¹⁹ proposed to use printed adversarial glasses
- It uses ℓ_0 -optimization + EOT + TV + NPS + color adjustments
- But it was used for closed-set recognition (a few predefined person ID for training) and for old generation FaceID NN

¹⁸Feng R. et al. "Facilitating fashion camouflage art." 2013

¹⁹Sharif M. et al. "Accessorize to a crime: Real and stealthy attacks on state-of-the-art-face recognition." 2016

- Initially the so called Camouflage Art¹⁸
 was used to avoid the leading at that time
 Viola-Jones face detection system
- It was just the makeup crafted manually to fool the Haar detector
- Pioneering work by Sharif et al.¹⁹ proposed to use printed adversarial glasses
- It uses ℓ_0 -optimization + EOT + TV + NPS + color adjustments
- But it was used for closed-set recognition (a few predefined person ID for training) and for old generation FaceID NN

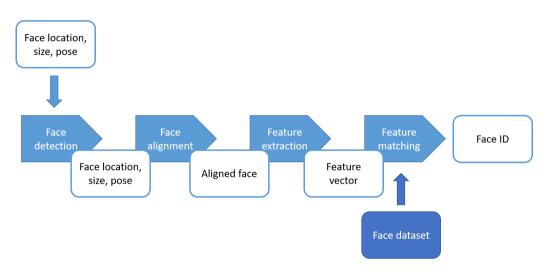
cvdazzle.com

Adversarial glasses

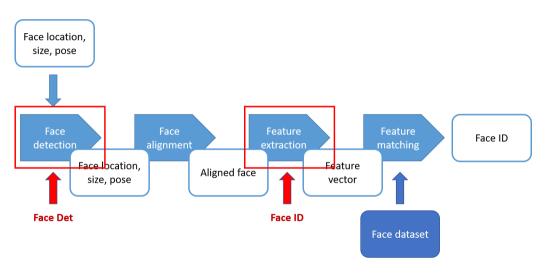
¹⁸Feng R. et al. "Facilitating fashion camouflage art." 2013

¹⁹Sharif M. et al. "Accessorize to a crime: Real and stealthy attacks on state-of-the-art-face recognition." 2016

Face processing pipeline



Face processing pipeline



 Unlike modern and heavy detectors based on Faster RCNN and YOLO the MTCNN detector is quite shallow

smaller perception field, harder to change the detection conclusion

²⁰Zhang K. et al. "Joint face detection and alignment using multitask cascaded convolutional networks." 2016 $^\circ$

- Unlike modern and heavy detectors based on Faster RCNN and YOLO the MTCNN detector is quite shallow

 smaller perception field, harder to change the detection conclusion
- MTCNN is cascade-based: in the beginning the rough approximation is provided (P-Net), then its tuning (R-Net and O-Net) is performed

- Unlike modern and heavy detectors based on Faster RCNN and YOLO the MTCNN detector is quite shallow

 smaller perception field, harder to change the detection conclusion
- MTCNN is cascade-based: in the beginning the rough approximation is provided (P-Net), then its tuning (R-Net and O-Net) is performed
- Based on our experiments, the most appropriate place for attack is the first P-Net and its classification loss (not bounding boxes or key points regression losses)

- Unlike modern and heavy detectors based on Faster RCNN and YOLO the MTCNN detector is quite shallow \Rightarrow smaller perception field, harder to change the detection conclusion
- MTCNN is cascade-based: in the beginning the rough approximation is provided (P-Net), then its tuning (R-Net and O-Net) is performed
- Based on our experiments, the most appropriate place for attack is the first P-Net and its classification loss (not bounding boxes or key points regression losses)

MTCNN scheme Test image Image pyramid Bounding box regression Stage 1 P-Net NMS & Bounding box regression Stage 2 Rounding box regression

²⁰Zhang K. et al. "Joint face detection and alignment using multitask cascaded convolutional networks." 2016 \circ Aleksandr Petiushko

• EOT: Gaussian noise, patch size, brightness, batch of different face images

- EOT: Gaussian noise, patch size, brightness, batch of different face images
- TV loss: used, NPS: not used

- EOT: Gaussian noise, patch size, brightness, batch of different face images
- TV loss: used, NPS: not used
- Color adjustment: push the color to be the black one $(x_{i,j}=1) \Rightarrow$ new additive loss part: $L_{BLK}(x) = \sum_{i,j} (1-x_{i,j})$

- EOT: Gaussian noise, patch size, brightness, batch of different face images
- TV loss: used, NPS: not used
- Color adjustment: push the color to be the black one $(x_{i,j} = 1) \Rightarrow$ new additive loss part: $L_{BLK}(x) = \sum_{i,j} (1 x_{i,j})$
- MI-FGSM as the optimizer

- EOT: Gaussian noise, patch size, brightness, batch of different face images
- TV loss: used. NPS: not used
- Color adjustment: push the color to be the black one $(x_{i,j} = 1) \Rightarrow$ new additive loss part: $L_{BLK}(x) = \sum_{i,j} (1 - x_{i,j})$
- MI-FGSM as the optimizer

MTCNN adversarial attack Image 1 MI-EGSM Patch 1

ullet ℓ_0 -based optimization: two versions of adversarial patches

- ullet ℓ_0 -based optimization: two versions of adversarial patches
 - two distinct patches on cheeks
 - 2 the whole medicine mask

- \bullet $\ell_0\text{-based}$ optimization: two versions of adversarial patches
 - two distinct patches on cheeks
 - 2 the whole medicine mask
- MTCNN has small perceptive field ⇒ patches are not semantical (unlike for FaceID, see next)

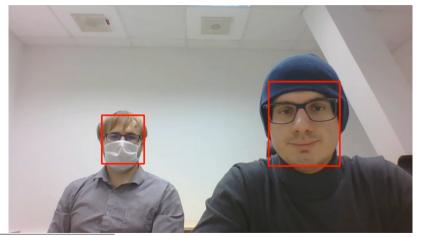
- ℓ_0 -based optimization: two versions of adversarial patches
 - two distinct patches on cheeks
 - 2 the whole medicine mask
- MTCNN has small perceptive field ⇒ patches are not semantical (unlike for FaceID, see next)
- Need to estimate the local affine projections parameters based on the prepared special grid

- \bullet $\ell_0\text{-based}$ optimization: two versions of adversarial patches
 - two distinct patches on cheeks
 - 2 the whole medicine mask
- MTCNN has small perceptive field ⇒ patches are not semantical (unlike for FaceID, see next)
- Need to estimate the local affine projections parameters based on the prepared special grid

Projection

Patches

Details: paper²¹ (IEEE-2019) and video²².



²¹Kaziakhmedov E. et al. "Real-world attack on MTCNN face detection system." 2019

²²https://www.youtube.com/watch?v=0Y700IS8bxs

FaceID: ArcFace²³

 For face ID adversarial attack the best public face ID system was chosen: ArcFace

|FaceID: ArcFace²³

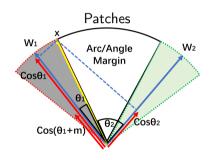
- For face ID adversarial attack the best public face ID system was chosen: ArcFace
- Main idea of ArcFace to use angle margin (aligned with cosine similarity)

FaceID: ArcFace²³

- For face ID adversarial attack the best public face ID system was chosen: ArcFace
- Main idea of ArcFace to use angle margin (aligned with cosine similarity)
- Huge training dataset (MS1M) and deep CNN (ResNet-100) are used

|FaceID: ArcFace²³

- For face ID adversarial attack the best public face ID system was chosen: ArcFace
- Main idea of ArcFace to use angle margin (aligned with cosine similarity)
- Huge training dataset (MS1M) and deep CNN (ResNet-100) are used



²³Deng J. et al. "Arcface: Additive angular margin loss for deep face recognition." 2018

Adversarial attack on ArcFace face ID

• EOT: Different patch projection parameters, single face image

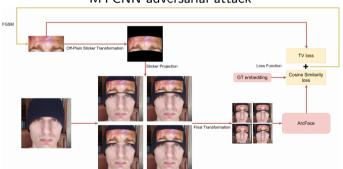
- EOT: Different patch projection parameters, single face image
- TV loss: used, NPS: not used, Color adjustment: not used

- EOT: Different patch projection parameters, single face image
- TV loss: used, NPS: not used, Color adjustment: not used
- Additive similarity loss to work in open-set setting: $L_{sim}(x, x_{gt}) = cos(emb(x), emb(x_{gt}))$, where x_{gt} template image for the person, emb(x) feature vector of x

- EOT: Different patch projection parameters, single face image
- TV loss: used, NPS: not used, Color adjustment: not used
- Additive similarity loss to work in open-set setting: $L_{sim}(x, x_{gt}) = cos(emb(x), emb(x_{gt}))$, where x_{gt} template image for the person, emb(x) feature vector of x
- MI-FGSM as the optimizer

- EOT: Different patch projection parameters, single face image
- TV loss: used, NPS: not used, Color adjustment: not used
- Additive similarity loss to work in open-set setting: $L_{sim}(x, x_{gt}) = cos(emb(x), emb(x_{gt}))$, where x_{gt} — template image for the person, emb(x) — feature vector of x
- MI-FGSM as the optimizer

MTCNN adversarial attack



ullet ℓ_0 -based optimization: color patch on the forehead

- ullet ℓ_0 -based optimization: color patch on the forehead
- Deep NN ⇒ large perception field ⇒ patch is semantical

- ℓ_0 -based optimization: color patch on the forehead
- Deep NN \Rightarrow large perception field \Rightarrow patch is semantical
- Nonlinear off-plane projection:

$$(x, y, 0) \to (x', y, z'), z' = a \cdot x'^2$$

- ullet ℓ_0 -based optimization: color patch on the forehead
- Deep NN \Rightarrow large perception field \Rightarrow patch is semantical
- Nonlinear off-plane projection: $(x, y, 0) \rightarrow (x', y, z'), z' = a \cdot x'^2$
- All image transformation done by differentiable Spatial Transformer Layer²⁴

- ullet ℓ_0 -based optimization: color patch on the forehead
- Deep NN ⇒ large perception field ⇒ patch is semantical
- Nonlinear off-plane projection: $(x, y, 0) \rightarrow (x', y, z'), z' = a \cdot x'^2$
- All image transformation done by differentiable Spatial Transformer Layer²⁴

$$x' = a \cdot \left(|x| \cdot \sqrt{x^2 + \frac{1}{4 \cdot a^2}} + \frac{1}{4 \cdot a^2} \cdot \ln\left(|x| + \sqrt{x^2 + \frac{1}{4 \cdot a^2}} \right) - \frac{1}{4 \cdot a^2} \cdot \ln\left(\frac{1}{2 \cdot a} \right) \right)$$

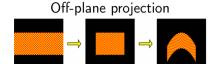
Off-plane projection

→ → →

- ullet ℓ_0 -based optimization: color patch on the forehead
- Deep NN \Rightarrow large perception field \Rightarrow patch is semantical
- Nonlinear off-plane projection: $(x, y, 0) \rightarrow (x', y, z'), z' = a \cdot x'^2$
- All image transformation done by differentiable Spatial Transformer Layer²⁴

$$x' = a \cdot \left(|x| \cdot \sqrt{x^2 + \frac{1}{4 \cdot a^2}} + \frac{1}{4 \cdot a^2} \cdot \ln\left(|x| + \sqrt{x^2 + \frac{1}{4 \cdot a^2}} \right) - \frac{1}{4 \cdot a^2} \cdot \ln\left(\frac{1}{2 \cdot a} \right) \right)$$

Semantical patch examples



AdvHat — invisibility hat

Due to the better projection procedure and richer color information, the attack is robust to rotations and brightness variation

Frontal face (advhat: no) Similarity to origin: 0.61

> Frontal face (advhat: yes)

Similarity to origin: 0.02

Similarity to other: 0.23

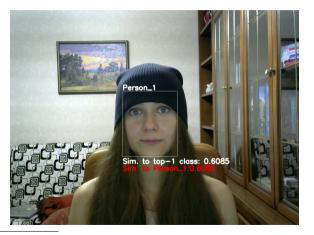
Rotated face (advhat: no) Similarity to origin: 0.54

> Rotated face (advhat: yes)

Similarity to origin: 0.11 Similarity to other: 0.27

Adversarial attack on ArcFace face ID: outcome

Details: paper²⁵ (ICPR-2020) and video²⁶.



²⁵Komkov S. et al. "Advhat: Real-world adversarial attack on arcface face id system." 2019

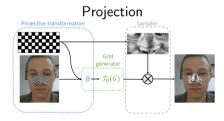
²⁶https://www.youtube.com/watch?v=a4iNgOwWBsQ

Adversarial attack on ArcFace face ID: grayscale patch²⁷ (IEEE-2019)

- Combination of two previous approaches:
 - Grayscale color loss adjustment
 - Local affine grid projection

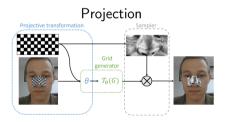
Adversarial attack on ArcFace face ID: grayscale patch²⁷ (IEEE-2019)

- Combination of two previous approaches:
 - Grayscale color loss adjustment
 - Local affine grid projection
- Patch is also semantical



Adversarial attack on ArcFace face ID: grayscale patch²⁷ (IEEE-2019)

- Combination of two previous approaches:
 - Grayscale color loss adjustment
 - Local affine grid projection
- Patch is also semantical



Patches

- Almost all of the real world attacks are patch-based
 - Proposal: Adversarial Training (AT)²⁸ in the pixel space with patch-based augmentation

²⁹Wu T. et al. "Defending Against Physically Realizable Attacks on Image Classification." 2019

²⁸Goodfellow I. et al. "Explaining and harnessing adversarial examples." 2014

- Almost all of the real world attacks are patch-based
 - Proposal: Adversarial Training (AT)²⁸ in the pixel space with patch-based augmentation
- AT decoupling:
 - Best (=max loss) location of gray patch by:
 - Exhaustive search
 - Max gradient locations w.r.t. input

²⁹Wu T. et al. "Defending Against Physically Realizable Attacks on Image Classification." 2019

²⁸Goodfellow I. et al. "Explaining and harnessing adversarial examples." 2014

- Almost all of the real world attacks are patch-based
 - Proposal: Adversarial Training (AT)²⁸ in the pixel space with patch-based augmentation
- AT decoupling:
 - Best (=max loss) location of gray patch by:
 - Exhaustive search
 - Max gradient locations w.r.t. input
 - PGD inside this patch

²⁹Wu T. et al. "Defending Against Physically Realizable Attacks on Image Classification." 2019

²⁸Goodfellow I. et al. "Explaining and harnessing adversarial examples." 2014

- Almost all of the real world attacks are patch-based
 - Proposal: Adversarial Training (AT)²⁸ in the pixel space with patch-based augmentation
- AT decoupling:
 - Best (=max loss) location of gray patch by:
 - Exhaustive search
 - Max gradient locations w.r.t. input
 - PGD inside this patch

• Common training procedure:

$$\min_{\theta} \mathbb{E}_{x,y}[L(\theta, x, y)]$$

Adversarial Training:

$$\min_{\theta} \mathbb{E}_{x,y}[\max_{r \in \Delta} L(\theta, x + r, y)]$$

²⁹Wu T. et al. "Defending Against Physically Realizable Attacks on Image Classification." 2019

²⁸Goodfellow I. et al. "Explaining and harnessing adversarial examples." 2014

- Almost all of the real world attacks are patch-based
 - Proposal: Adversarial Training (AT)²⁸ in the pixel space with patch-based augmentation
- AT decoupling:
 - Best (=max loss) location of gray patch by:
 - Exhaustive search
 - Max gradient locations w.r.t. input
 - PGD inside this patch

Common training procedure:

$$\min_{\theta} \mathbb{E}_{x,y}[L(\theta, x, y)]$$

Adversarial Training:

$$\min_{\theta} \mathbb{E}_{x,y}[\max_{r \in \Delta} L(\theta, x+r, y)]$$

²⁹Wu T. et al. "Defending Against Physically Realizable Attacks on Image Classification." 2019

²⁸Goodfellow I. et al. "Explaining and harnessing adversarial examples." 2014

- Black-box model M: M(x) = y, where
 - x input image of the face
 - *y* its feature representation (embedding)

 31 Schroff F. et al. "Facenet: A unified embedding for face recognition and clustering." $_{2}$ 2015. $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$

 $^{^{30}\}mbox{Mai}$ G. et al. "On the reconstruction of face images from deep face templates." 2018

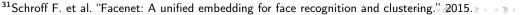
- Black-box model M: M(x) = y, where
 - x input image of the face
 - *y* its feature representation (embedding)
- Task: to recover x' to preserve the person identity

 31 Schroff F. et al. "Facenet: A unified embedding for face recognition and clustering." $_{2}$ 2015. $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$

 $^{^{30}\}mbox{Mai}$ G. et al. "On the reconstruction of face images from deep face templates." 2018

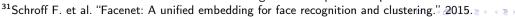
- Black-box model M: M(x) = y, where
 - *x* input image of the face
 - *y* its feature representation (embedding)
- Task: to recover x' to preserve the person identity
- Prior art: using reconstruction MSE and perceptual metrics / GANs (NBNet³⁰)

³⁰Mai G. et al. "On the reconstruction of face images from deep face templates." 2018



- Black-box model M: M(x) = y, where
 - *x* input image of the face
 - *y* its feature representation (embedding)
- Task: to recover x' to preserve the person identity
- Prior art: using reconstruction MSE and perceptual metrics / GANs (NBNet³⁰)
- Our approach: use zero-order optimization to find such x' so as FaceID $M(x') \approx M(x)$

 $^{^{30}}$ Mai G. et al. "On the reconstruction of face images from deep face templates." 2018



- Black-box model M: M(x) = y, where
 - *x* input image of the face
 - *y* its feature representation (embedding)
- Task: to recover x' to preserve the person identity
- Prior art: using reconstruction MSE and perceptual metrics / GANs (NBNet³⁰)
- Our approach: use zero-order optimization to find such x' so as FaceID $M(x') \approx M(x)$
 - Use as M the public SotA in FaceID: ArcFace

 $^{^{30}\}mbox{Mai}$ G. et al. "On the reconstruction of face images from deep face templates." 2018

- Black-box model M: M(x) = y, where
 - *x* input image of the face
 - *y* its feature representation (embedding)
- Task: to recover x' to preserve the person identity
- Prior art: using reconstruction MSE and perceptual metrics / GANs (NBNet³⁰)
- Our approach: use zero-order optimization to find such x' so as FaceID $M(x') \approx M(x)$
 - Use as M the public SotA in FaceID: ArcFace
 - Test by using independent critic: FaceNET³¹

 $^{^{30}}$ Mai G. et al. "On the reconstruction of face images from deep face templates." 2018

- Black-box model M: M(x) = y, where
 - *x* input image of the face
 - *y* its feature representation (embedding)
- Task: to recover x' to preserve the person identity
- Prior art: using reconstruction MSE and perceptual metrics / GANs (NBNet³⁰)
- Our approach: use zero-order optimization to find such x' so as FaceID $M(x') \approx M(x)$
 - Use as M the public SotA in FaceID: ArcFace
 - Test by using independent critic: FaceNET³¹
 - Similarity loss: 1 cos(M(x'), M(x))

 $^{^{30}}$ Mai G. et al. "On the reconstruction of face images from deep face templates." 2018

- Black-box model M: M(x) = y, where
 - *x* input image of the face
 - *y* its feature representation (embedding)
- Task: to recover x' to preserve the person identity
- Prior art: using reconstruction MSE and perceptual metrics / GANs (NBNet³⁰)
- Our approach: use zero-order optimization to find such x' so as FaceID $M(x') \approx M(x)$
 - Use as M the public SotA in FaceID: ArcFace
 - Test by using independent critic: FaceNET³¹
 - Similarity loss: 1 cos(M(x'), M(x))
 - Additional term: $(||M(x')||_2 ||M(x)||_2)^2$

 $^{^{30}\}mbox{Mai}$ G. et al. "On the reconstruction of face images from deep face templates." 2018

- Black-box model M: M(x) = y, where
 - *x* input image of the face
 - *y* its feature representation (embedding)
- Task: to recover x' to preserve the person identity
- Prior art: using reconstruction MSE and perceptual metrics / GANs (NBNet³⁰)
- Our approach: use zero-order optimization to find such x' so as FaceID $M(x') \approx M(x)$
 - Use as M the public SotA in FaceID: ArcFace
 - Test by using independent critic: FaceNET³¹
 - Similarity loss: 1 cos(M(x'), M(x))
 - Additional term: $(||M(x')||_2 ||M(x)||_2)^2$

 Main difficulty: huge search space in pixel domain

³¹Schroff F. et al. "Facenet: A unified embedding for face recognition and clustering." 2015.

³⁰Mai G. et al. "On the reconstruction of face images from deep face templates." 2018

- Black-box model M: M(x) = y, where
 - *x* input image of the face
 - *y* its feature representation (embedding)
- Task: to recover x' to preserve the person identity
- Prior art: using reconstruction MSE and perceptual metrics / GANs (NBNet³⁰)
- Our approach: use zero-order optimization to find such x' so as FaceID $M(x') \approx M(x)$
 - Use as M the public SotA in FaceID: ArcFace
 - Test by using independent critic: FaceNET³¹
 - Similarity loss: 1 cos(M(x'), M(x))
 - Additional term: $(||M(x')||_2 ||M(x)||_2)^2$

- Main difficulty: huge search space in pixel domain
- Solution: to use prior knowledge about face — 2D Gaussians

$$G(x, y) = A \cdot e^{\frac{(x-x_0)^2}{2\sigma_1^2} + \frac{(y-y_0)^2}{2\sigma_2^2}}$$

28 / 34

31Schroff F. et al. "Facenet: A unified embedding for face recognition and clustering." 2015.

³⁰Mai G. et al. "On the reconstruction of face images from deep face templates." 2018

- Black-box model M: M(x) = y, where
 - *x* input image of the face
 - *y* its feature representation (embedding)
- Task: to recover x' to preserve the person identity
- Prior art: using reconstruction MSE and perceptual metrics / GANs (NBNet³⁰)
- Our approach: use zero-order optimization to find such x' so as FaceID $M(x') \approx M(x)$
 - Use as M the public SotA in FaceID: ArcFace
 - Test by using independent critic: FaceNET³¹
 - Similarity loss: 1 cos(M(x'), M(x))
 - Additional term: $(||M(x')||_2 ||M(x)||_2)^2$

- Main difficulty: huge search space in pixel domain
- Solution: to use prior knowledge about face — 2D Gaussians

$$G(x,y) = A \cdot e^{\frac{(x-x_0)^2}{2\sigma_1^2} + \frac{(y-y_0)^2}{2\sigma_2^2}}$$

$$(x_0, y_0, \sigma_1, \sigma_2, A) = (56, 72, 22, 42, 1)$$

 $^{^{30}}$ Mai G. et al. "On the reconstruction of face images from deep face templates." 2018

³¹Schroff F. et al. "Facenet: A unified embedding for face recognition and clustering." 2015. € → √ €

• Even prior info about face is not enough

29 / 34

- Even prior info about face is not enough
- Trick1: Use vertical face symmetry ⇒ use only half of the face to search

- Even prior info about face is not enough
- Trick1: Use vertical face symmetry ⇒ use only half of the face to search
- Trick2: For identity preservation usually no need in color ⇒ use only a single color channel instead of 3

- Even prior info about face is not enough
- Trick1: Use vertical face symmetry ⇒ use only half of the face to search
- Trick2: For identity preservation usually no need in color ⇒ use only a single color channel instead of 3

Original ArcFace: 0.978

ArcFace: 0.961 FaceNet: 0.314

Symmetrical, non-symmetrical, color restoration

- Even prior info about face is not enough
- Trick1: Use vertical face symmetry ⇒ use only half of the face to search
- Trick2: For identity preservation usually no need in color ⇒ use only a single color channel instead of 3

Original

ArcFace: 0.978 FaceNet: 0.721

ArcFace: 0.992 FaceNet: 0.685

ArcFace: 0.961 FaceNet: 0.314

Symmetrical, non-symmetrical, color restoration

• Initialization: What to use as the starting point?

Black-box face restoration: successful tricks

- Even prior info about face is not enough
- Trick1: Use vertical face symmetry ⇒ use only half of the face to search
- Trick2: For identity preservation usually no need in color ⇒ use only a single color channel instead of 3

Original

ArcFace: 0.978 FaceNet: 0.721

ArcFace: 0.992 FaceNet: 0.685

ArcFace: 0.961 FaceNet: 0.314

Symmetrical, non-symmetrical, color restoration

- Initialization: What to use as the starting point?
- Common approach: to use other face (can be biased)

Black-box face restoration: successful tricks

- Even prior info about face is not enough
- Trick1: Use vertical face symmetry ⇒ use only half of the face to search
- Trick2: For identity preservation usually no need in color \Rightarrow use only a single color channel instead of 3

Original

ArcEace: 0.978 FaceNet: 0.721

ArcEace: 0.002 FaceNet: 0.685

Symmetrical, non-symmetrical, color restoration

- Initialization: What to use as the starting point?
- Common approach: to use other face (can be biased)
- Our approach: optimal Gaussian blob (additional loss term is needed)

Reconstructed

Black-box face restoration: algorithm and results

Algorithm

```
Algorithm 1 Face recovery algorithm
```

```
INPUT: target face embedding y, black-box model M, loss function L, N_{queries}
```

- 1: $X \leftarrow 0$
- 2: Initialize G_0
- 3: for i ← 0 to N_{queries} do:
- 4: Allocate image batch X
- 5: Sample batch **G** of random gaussians
- 6: $\mathbf{X}_i = X + G_0 + \mathbf{G}_i$
- 6: $X_j = X + G_0 + G_0 + G_0$ 7: y' = M(X)
- 8: ind = $\operatorname{argmin}\left(L(\mathbf{y}'_{i}, y)\right)$
- 9: $X \leftarrow X + \mathbf{G}_{ind}$
- 10: $G_0 \leftarrow 0.99 \cdot G_0$
- 11: $i \leftarrow i + \text{batchsize}$
- 12: end for
- 13: $X \leftarrow X + G_0$

OUTPUT: reconstructed face X

Black-box face restoration: algorithm and results

Algorithm

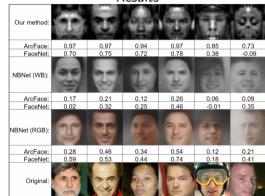
Algorithm 1 Face recovery algorithm

INPUT: target face embedding y, black-box model M, loss function L, $N_{queries}$

- 1: $X \leftarrow 0$
- Initialize G₀
- 3: for i ← 0 to N_{queries} do:
- 4: Allocate image batch X
- 5: Sample batch G of random gaussians
- 6: $\mathbf{X}_i = X + G_0 + \mathbf{G}_i$
- 6: $X_j = X + G_0 + G_0$ 7: y' = M(X)
- 8: ind = $\operatorname{argmin}\left(L(\mathbf{y}_i', y)\right)$
- 9: $X \leftarrow X + \mathbf{G}_{ind}$
- 10: $G_0 \leftarrow 0.99 \cdot G_0$
- 11: $i \leftarrow i + \text{batchsize}$
- 12: end for
- 13: $X \leftarrow X + G_0$

OUTPUT: reconstructed face X

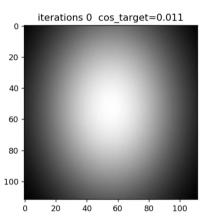
Results



30 / 34

Black-box face restoration: outcome

Details: paper³² (ECCV-2020) and video presentation³³.



³²Razzhigaev A. et al. "Black-Box Face Recovery from Identity Features." 2020

³³https://www.youtube.com/watch?v=sOrTcqRTw2A

• CNNs for now are much better than human expert in controlled conditions

- CNNs for now are much better than human expert in controlled conditions
- CNNs are unstable w.r.t. its input

- CNNs for now are much better than human expert in controlled conditions
- CNNs are unstable w.r.t. its input
- ullet Digital o physical domain attack translation is hard

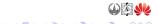
- CNNs for now are much better than human expert in controlled conditions
- CNNs are unstable w.r.t. its input
- ullet Digital o physical domain attack translation is hard
- But even the most successful face ID systems can be fooled by a simple grayscale patch from common printer

- CNNs for now are much better than human expert in controlled conditions
- CNNs are unstable w.r.t. its input
- ullet Digital o physical domain attack translation is hard
- But even the most successful face ID systems can be fooled by a simple grayscale patch from common printer
- ℓ_0 -based local attack + TV loss are the must

32 / 34

- CNNs for now are much better than human expert in controlled conditions
- CNNs are unstable w.r.t. its input
- ullet Digital o physical domain attack translation is hard
- But even the most successful face ID systems can be fooled by a simple grayscale patch from common printer
- ℓ_0 -based local attack + TV loss are the must
- Need to use projection schemes allowing gradient backpropagation

- CNNs for now are much better than human expert in controlled conditions
- CNNs are unstable w.r.t. its input
- ullet Digital o physical domain attack translation is hard
- But even the most successful face ID systems can be fooled by a simple grayscale patch from common printer
- ℓ_0 -based local attack + TV loss are the must
- Need to use projection schemes allowing gradient backpropagation
- Adversarial training in practice (or certified robustness in theory) can help to defense



- CNNs for now are much better than human expert in controlled conditions
- CNNs are unstable w.r.t. its input
- ullet Digital o physical domain attack translation is hard
- But even the most successful face ID systems can be fooled by a simple grayscale patch from common printer
- ℓ_0 -based local attack + TV loss are the must
- Need to use projection schemes allowing gradient backpropagation
- Adversarial training in practice (or certified robustness in theory) can help to defense
- Face image can be restored even in black-box setting using its embedding

4th of February, 2021

Присоединяйтесь к нам!

Кого мы ждем:

- □ Выпускники аспирантуры 2019-2021 годов
- ☐ Победители и призеры таких международных соревнований как ICPC, IMC, CTF, Kaggle, IMO, IOI, ICHO, IPHO etc.
- ☐ Техническое образование (информационные технологии, математика, физика, радиотехника, системы связи, информационная безопасность и др.)
- □ Английский на уровне "intermediate" и выше

- Nonlinear algorithm development
- Wireless communication technologies
- Computer Vision with Deep Learning
- Math Library optimization

 Automatic program repair
- Automatic program rep
 Compiler optimizations
- Automatic speech recognition
- Automatic speech recognition
- AI databases and AI enabled systems
- Distributed and Parallel software
- Image/Video signal processing
- Software engineering and innovation
- Automated machine learning & Model optimization
- Computer architecture

√ Новосибирсн

Peзюме можно выслать на почту: rrihr@huawei.com

https://career.huawei.ru/rri/

Inspired by science to connect the world!

Looking forward to seeing your application

Thank you!

34 / 34

