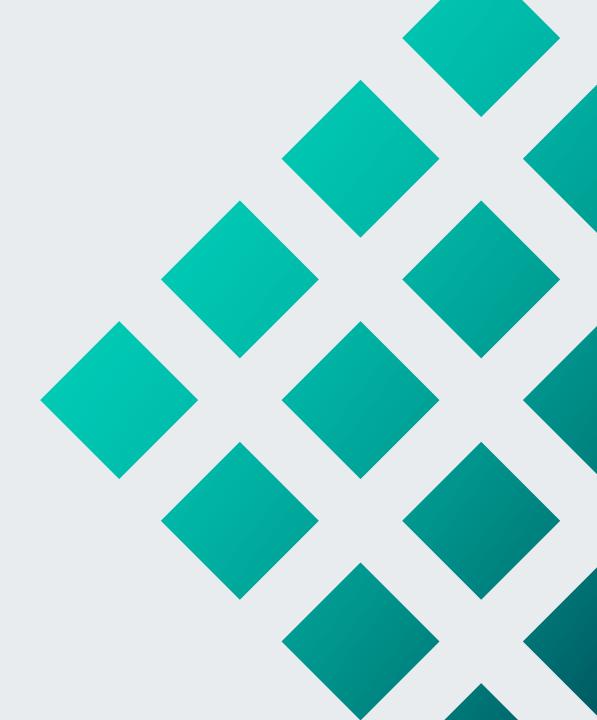


Trends in Al: Multi-modality, Multi-tasking, Effectiveness

Aleksandr Petiushko

Leading scientific researcher, AIRI

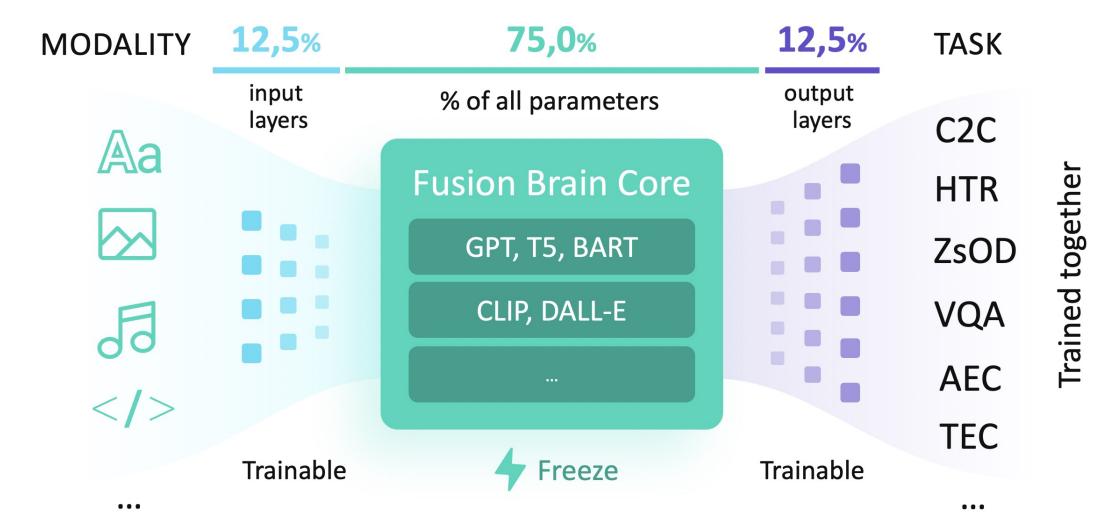
January 27, 2022



01

Motivation

Motivation



Motivation: business part

Problem

Retraining model from scratch is \$\$\$

Separate training

- Generation of good text description
- Zero-shot object detection
- Handwritten text recognition
- Code2Code
- Visual Q&A
- ..

Totally: ~ **\$\$\$** M

Solution

Fine-tuning large pretrained model \$\$

Single pre-training

• GPT-3, DALL-E, CLIP

Separate fine-tuning

- Generation of good text description
- Zero-shot object detection
- Handwritten text recognition
- Code2Code
- Visual Q&A
- ...

Totally: ~ \$\$ M

Motivation: ecological part

Problem

Retraining model from scratch: $CO_2 \uparrow \uparrow \uparrow$

Separate training

- Generation of good text description
- Zero-shot object detection
- Handwritten text recognition
- Code2Code
- Visual Q&A

•

Totally: ~ XXX kg CO₂e

Solution

Fine-tuning large pretrained model: CO₂ ↑↑

Single pre-training

• GPT-3, DALL-E, CLIP

Separate fine-tuning

- Generation of good text description
- Zero-shot object detection
- Handwritten text recognition
- Code2Code
- Visual Q&A
- ...

Totally: ~ XX kg CO₂e

Motivation: trends

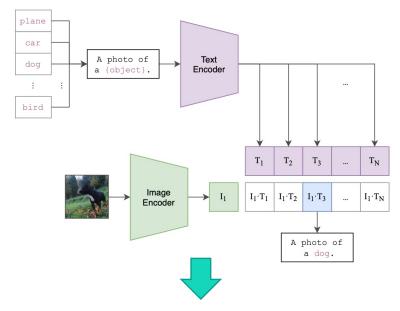
Current trends:

- Large pre-trained models (BERT, GPT-3)
- Multi-modality and multi-tasking (CLIP, DALL-E, UniT)

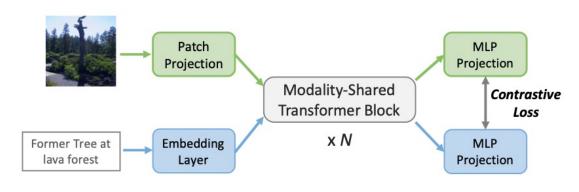
Target modalities: texts, images, sounds and other modalities like videos, programming languages, graphs and time series

Target tasks: NLP, CV and combined tasks like VQA

CLIP, 2021



MA-CLIP, 2022, ICLR



Motivation: WHY it is reasonable

Efficient

multi-modality

multi-task

models

WHY we need multi-*

decoder setup	COCO det. mAP	VG det. mAP	VQAv2 accuracy
single-task training	40.6 / -	3.87	66.38 / -
shared (COCO init.)	40.8 / 41.1	4.53	67.30 / 67.47

WHY we need efficiency

Model	#Params
GPT-3	175 B
Retrieval-	1 B
based	(3*BERT-
models	Large)

Motivation: WHY it is still non-solved

Model	#params	GLUE	SuperGLUE
RoBERTa-Large ST	<mark>8,5B</mark>	88.2	<mark>76.5</mark>
RoBERTa-Large MTL	355M	86.0	78.6
CA-MTL (RoBERTa-Large)	397,6M	89.4	80.0

Encoder (BERT)-based **Multi-**task: **better**

T5 (3B) STL	48B	88.5	86.4
HyperGrid (3B) MTL	3B	88.2	84.7
T5 (11B) STL	<mark>176B</mark>	<mark>89.7</mark>	<mark>88.9</mark>
HyperGrid (11B) MTL	11B	89.4	87.7

Decoder (T5)-based **Single**-task: **better**

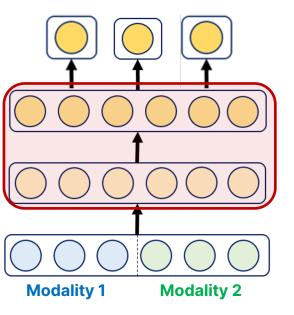
02

Multi-modality

Multi-modality: concepts

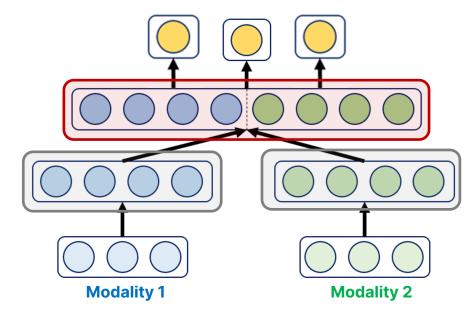
A. Early fusion

Task-specific heads



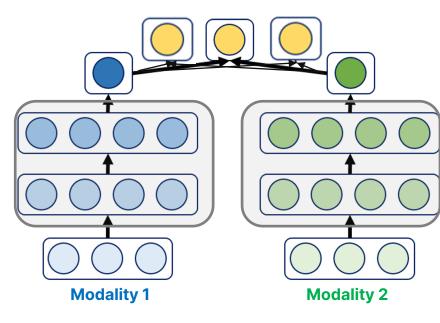
C. Middle fusion

Task-specific heads



B. Late fusion

Task-specific heads



Separate input

Combined input

Fusion processing

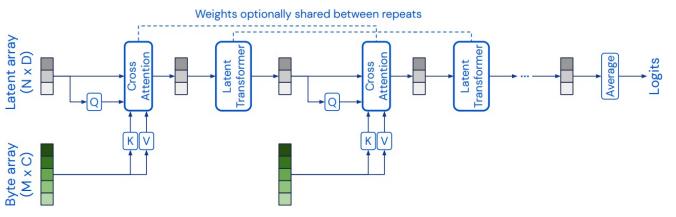
Modality-specific processing

Multi-modality: current trends

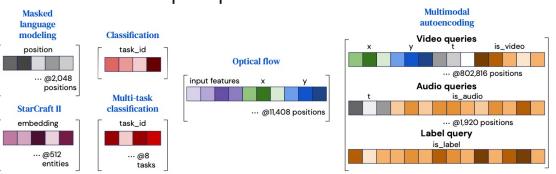
UniT¹: via cross-attention losses detection VQA SNLI-VE SST-2 task-specific class & classifier classifier classifier output heads box heads decoder task heads Add & Norm **FPT**²: via frozen MHA/FFN, tunable LN Concatenate Feed Forward image encoder text encoder Positional L frozen self-attention blocks **Embeddings** Add & Norm Add & Norm Add & Norm Multi-Head Add & Add & Feed Output Input Feed Multi-Head Feed Embedding Forward Attention Layer Norm Layer Norm Layer Forward Forward Cross Attention $N_v \times$ $N_t \times$ $N_d \times$ Add & Norm Add & Norm Add & Norm Multi-Head Multi-Head Multi-Head Self Attention Self Attention Self Attention task-specific convnet text embedding query embedding backbone image input text input task index

Multi-modality: current trends

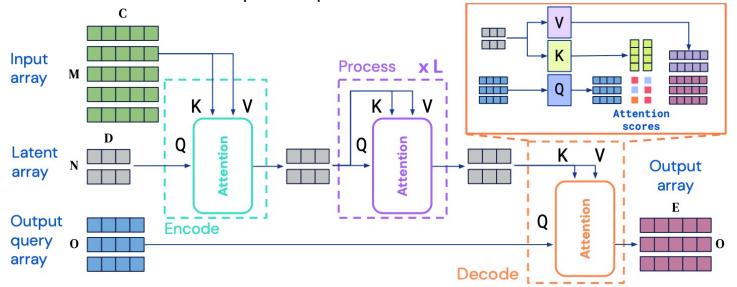
Perceiver¹: iterative CA



Perceiver IO: output queries



Perceiver IO²: CA on input/output



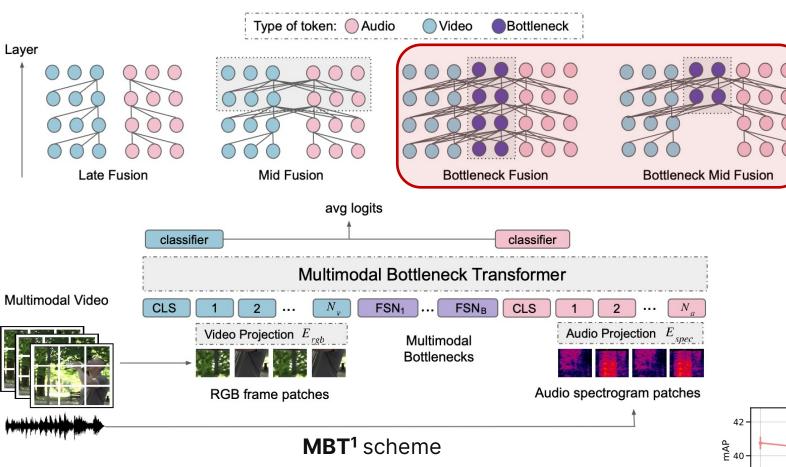
Main idea:

- Iterative fusion through cross-attention (query – latents, KV - input) allowing linear scaling on input size (not quadratic)
- Latent transformer is GPT-2 like
- Weights of CA/SA are shared
- Perceiver IO² added ability to work with multi-task and different output sizes via CA where query is output structure, KV – latents (complexity – still the linear depending on the output size)

^[1] Jaegle, Andrew, et al. "Perceiver: General perception with iterative attention." 2021 (*DeepMind*)

^[2] Jaegle, Andrew, et al. "Perceiver io: A general architecture for structured inputs & outputs." 2021 (DeepMind)

Multi-modality: through information bottleneck

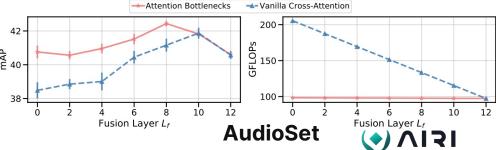


Main idea:

- Middle-fusion through a small bottleneck (B = 4 is used)
- Fusion is needed closely to the top

VGGSound²

Model	Modalities	Top-1 Acc	Top-5 Acc
Chen et al [‡] [11]	A	48.8	76.5
AudioSlowFast‡ [34]	A	50.1	77.9
MBT	A	52.3	78.1
MBT	V	51.2	72.6
MBT	A,V	64.1	85.6

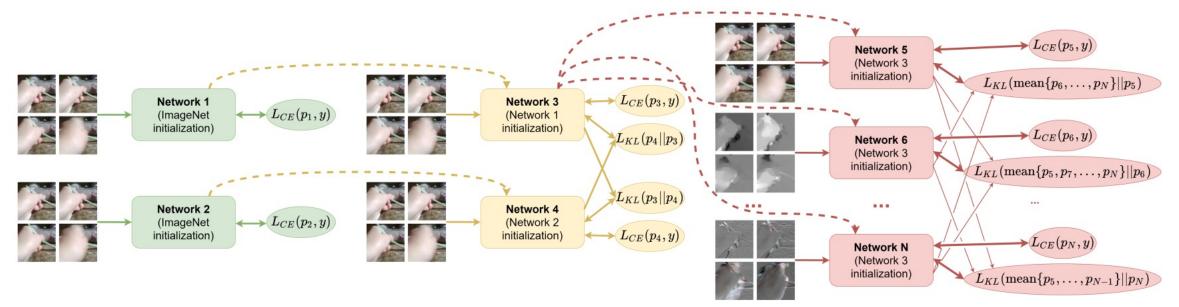


- [1] Nagrani, Arsha, et al. "Attention Bottlenecks for Multimodal Fusion." 2021 (Google)
- [2] https://www.robots.ox.ac.uk/~vgg/data/vggsound/

Multi-modality: through mutual learning

Main idea:

- Pseudo multi-modality through incorporation of knowledge by mutual learning technique
- RGB and OpticalFlow modalities for video action recognition were used



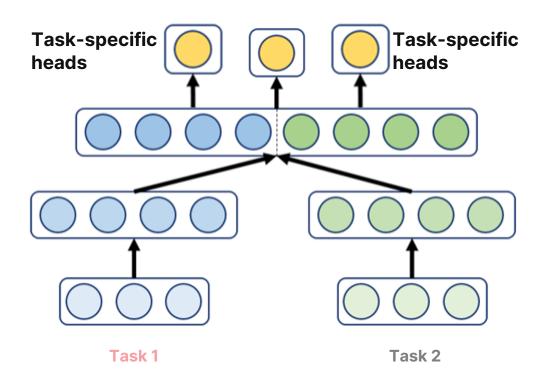
MML¹ scheme

03

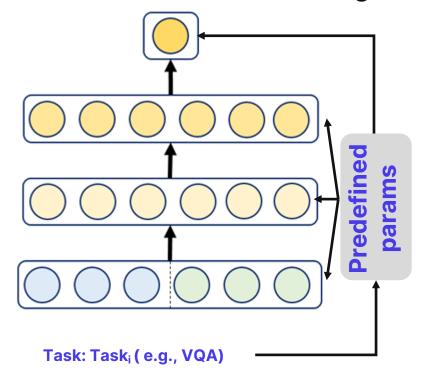
Multi-tasking

Multi-tasking: concepts

A. Known Head+FineTuning

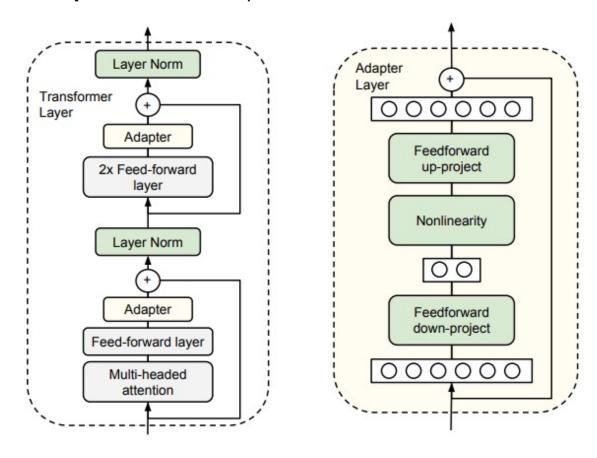


B. Learned Task Embedding



Multi-tasking: current trends

Adapters¹: via task-specific learnable modules

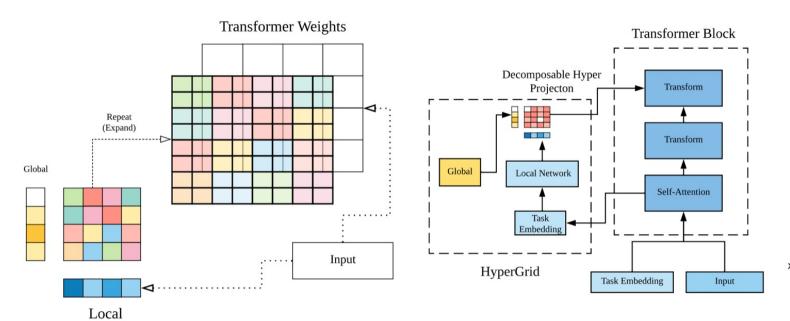


Main idea:

- Freeze the Transformer weights
- Add a small learnable task-specific module - adapter
- Performance close to single-task training, but **only +3.5% weights** for multi-task

Multi-tasking: current trends

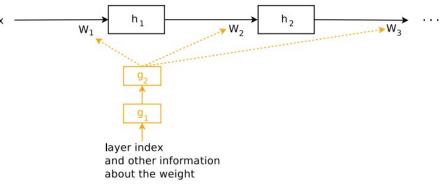
HyperGrid¹: via dynamical weight matrix adjustment by learned task embedding



Main idea:

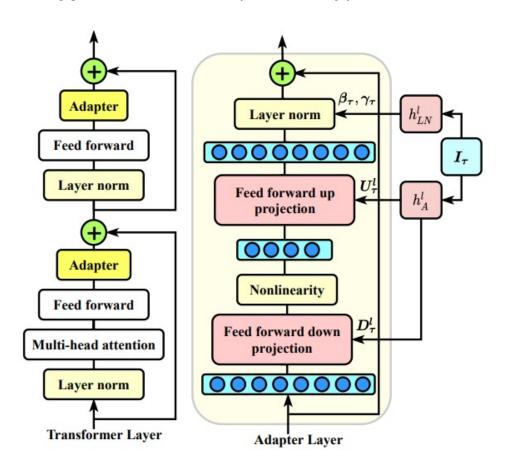
- Learned task embedding used to construct transformer matrix
- Back-bone transformer is T5
- Idea borrowed from HyperNets² conception

HyperNet concept



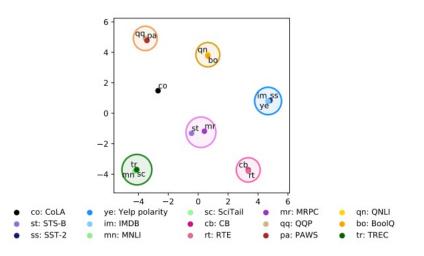
Multi-tasking: current trends

HyperFormer¹: Adapters + HyperNets



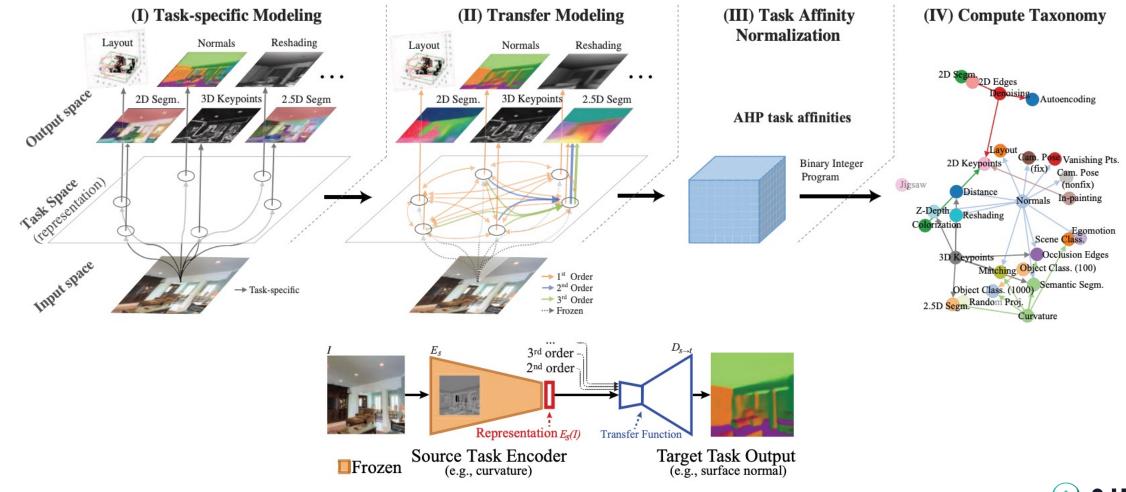
Main idea:

- Making the Adapters parameters through HyperNets
- New SotA with even less params than Adapters
- NLP task embeddings clusterization



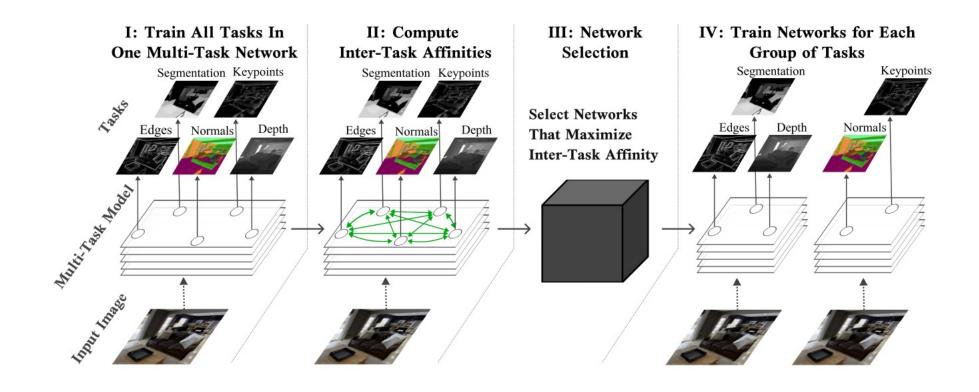
Multi-tasking: taskonomy

Taskonomy¹: Task grouping via pairwise transfer performance



Multi-tasking: how to group tasks

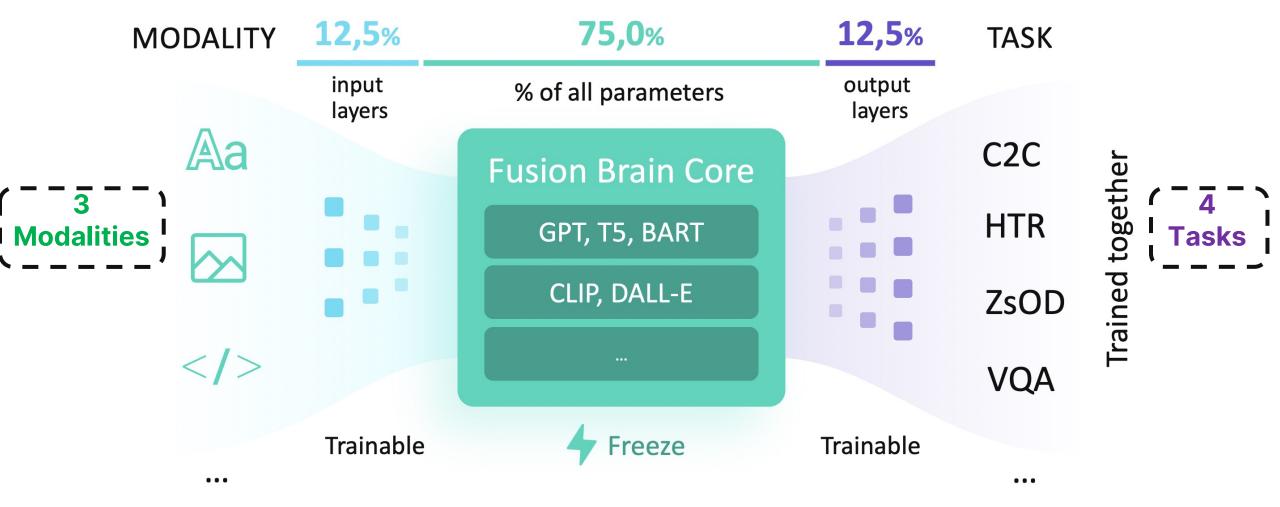
TAG¹: Task grouping via similar gradient update



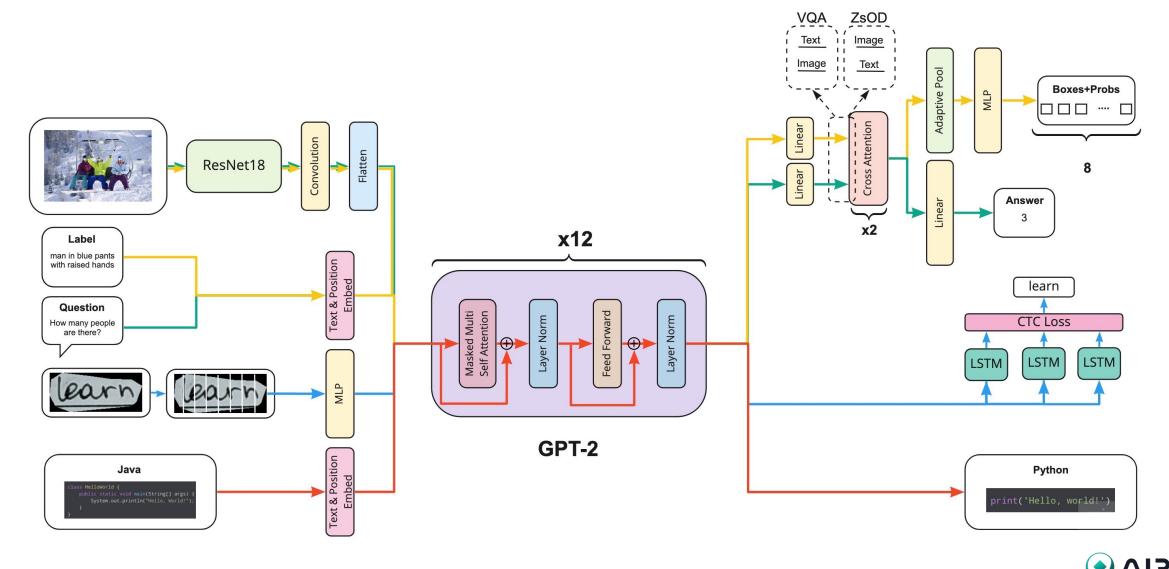
04

Fusion Brain approach

Fusion Brain concept¹: overview



Fusion Brain approach¹: FPT, GPT-2, cross-attention



Fusion Brain approach¹: results

Performance

	•	
- ††ı	CIA	ncv
Effi	CIC	IICy

training setup	C2C CodeBLEU	HTR Acc	ZsOD F1	VQA Acc	Overall	training setup	Training time (hours)	Training params	CO2 (kg)
Single-task	0.34	0.63	0.17	0.25	1.39	Single-task	215.0	3,283,978,882	39.34
Fusion	0.39	0.61	0.21	0.30	1.51	Fusion	150.5	988,272,474	27.45

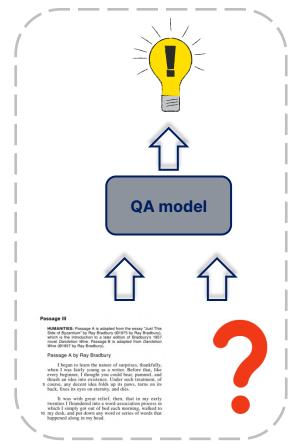
For comparison:

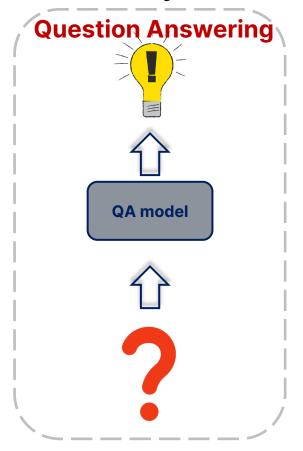
	CO ₂ emissions
Human Life	5 ton
Car with fuel	57 ton

05

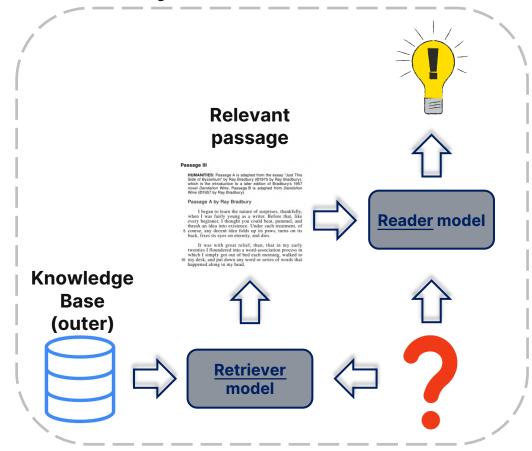
Retrieval-based models

Direction to add efficiency and explainability





Generation of knowledge^{1,2} Not scalable, all information is stored inside MRC model weights (like T5/GPT-3)



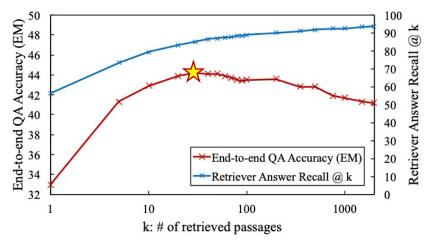
2-stage: first to retrieve the relevant model from outer text corpus, then extract knowledge from this passage

Realistic and scalable approach

Retrieval-based (RB) modeling

WHY to decompose: Retriever ≠ Reader¹

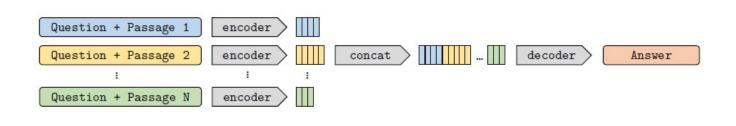
(a) End-to-end QA accuracy (Exact Match, y-axis on the left) of DPR reader and the retrieval recall rate (y-axis on the right) of DPR retriever.



Main idea:

- Retriever is not approx. of Reader: having more data helps a little for the Reader, and drops quickly
- Retriever is a sort of representational bottleneck

How to extract information from multiple sources²

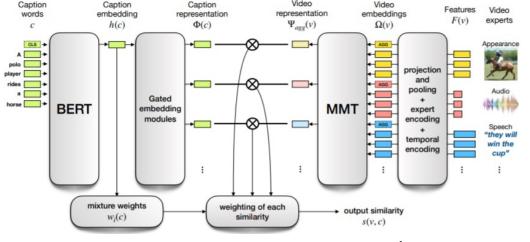


Main idea:

- Retriever: BERT-doc + BERT-query
- Reader: seq2seq T5, having query + retrieved doc as an input
 - added special tokens question:, title: and context: before the question, title and text of each passage
- Fusion-in-Decoder: output based on k > 1 passages

Multi-modality and multi-task in RB

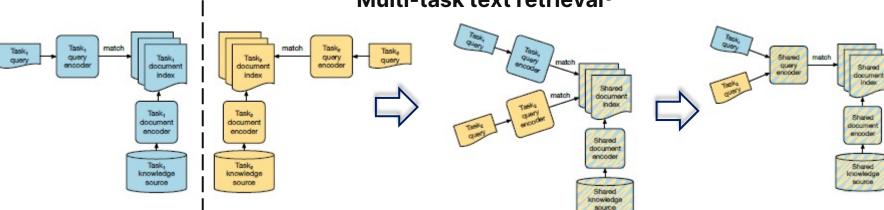
Multi-modality video retrieval^{1,2}



Main idea:

- **Video** as a **doc** in NLP RB, text query by BERT
- Multi-modality: middle fusion of non-query modalities + late fusion with text query
- For different NLP tasks the single retriever is beneficial
- But the training of retriever should be done on all datasets combined
- **Retriever: BERT**-based; **Reader**/downstream: **BART**-based

Multi-task text retrieval³



- [1] Gabeur, Valentin, et al. "Multi-modal transformer for video retrieval." 2020 (Google)
- [2] Dzabraev, Maksim, et al. "Mdmmt: Multidomain multimodal transformer for video retrieval." 2021 (Huawei)
- [3] Maillard, Jean, et al. "Multi-task retrieval for knowledge-intensive tasks." 2021 (Facebook)

06

Open Questions

Open Questions

1. Effectiveness

Current trend: usage of *LARGE* pre-trained models

Q: How to decrease the resource utilization (while training as well as on inference)?

2. Universality

Q₁: How to add the new modality *agnostically* (with minimal architectural changes)?

Q₂: How to add the new task *agnostically* (without full retraining)?

Q₃: What tasks could and what tasks should not be combined?

airi.net