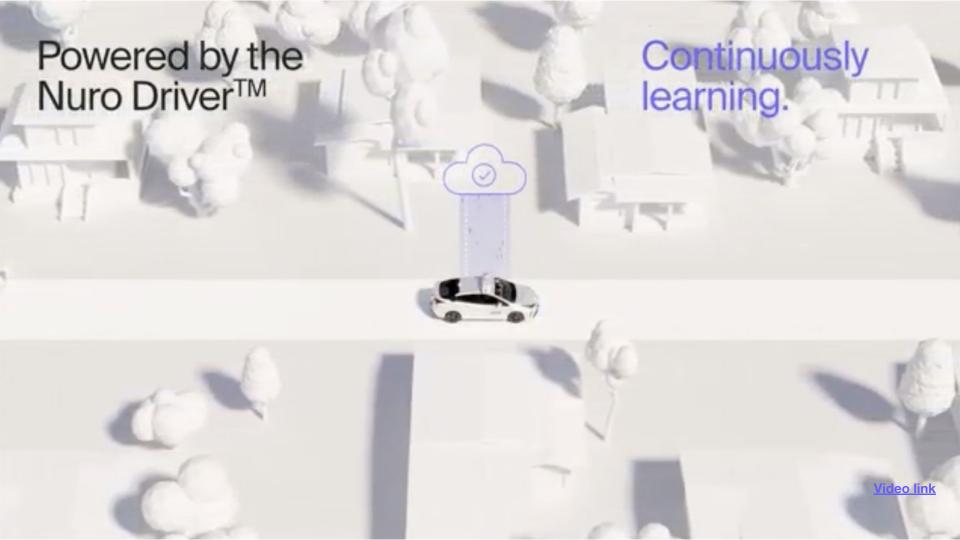


Nuro is on a mission to better everyday life through robotics.



Nuro Contributors

Jonathan Booher

Aleksandr Petiushko

Khashayar Rohanimanesh

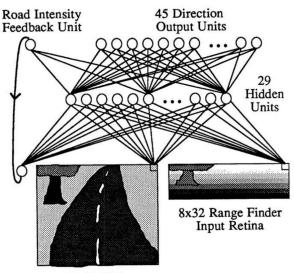
Junhong Xu

*Mentioned in the alphabetical order And former colleagues!

Content

01	Two worlds of Trajectory Generation
02	CIMRL
03	Integration with Closed-loop Sim
04	Results and Examples
05	Limitations and Conclusion

Imitation Learning



30x32 Video Input Retina

Figure 1: ALVINN Architecture

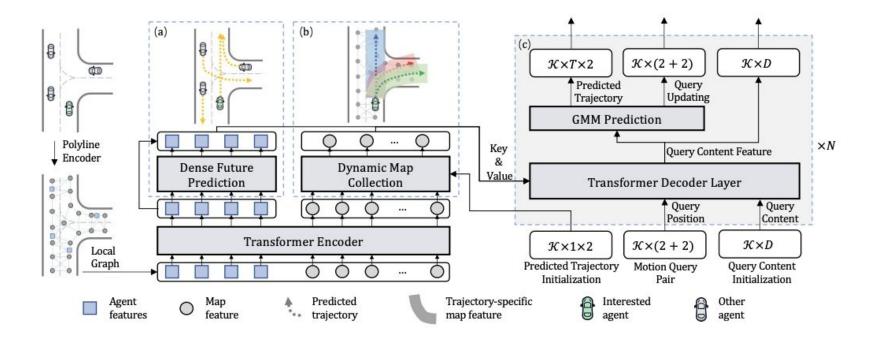
"NN can accurately drive the Ego Vehicle at a speed of 1/2 mps along a 400 m path through a wooded area under sunny fall conditions."

- Behavior Cloning from 1988 (!)

6

Imitation Learning

SotA Prediction model: Motion TRansformer (MTR and MTR++) from 2022-2023



Shi, Shaoshuai, et al. "Motion transformer with global intention localization and local movement refinement." 2022. Shi, Shaoshuai, et al. "MTR++: Multi-agent motion prediction with symmetric scene modeling and guided intention querying." 2023.

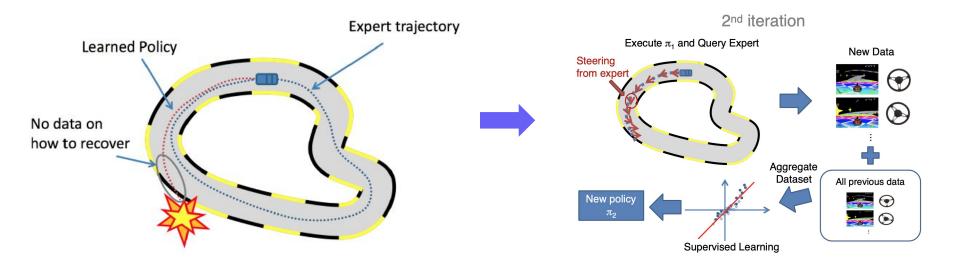
Imitation Learning

Pros:

→ Simple constructive algorithm scaling with data

Cons:

- → Hard to stay "in distribution" (error quickly accumulates)
- → Can be mitigated by Dataset Aggregation (DAgger) approach

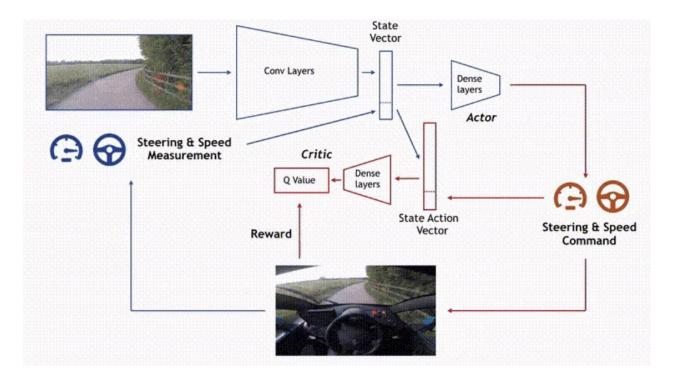


Ross, Stéphane, Geoffrey Gordon, and Drew Bagnell. "A reduction of imitation learning and structured prediction to no-regret online learning." 2011.

8

Reinforcement Learning

Online, off-policy RL (DDPG) from 2018



Kendall, Alex, et al. "Learning to drive in a day." 2018.

Reinforcement Learning

Pros:

- Adaptable to unseen scenarios
- Reasoning beyond imitation (hypothetical roll-outs)

Cons:

- → Hard to define rewards (human-like behavior)
- Need reliable infrastructure for reliable estimation at scale

IL+RL

Status Quo:

- Very good imitation-based models (for Prediction, Planning)
- → Models can be of different nature (ML-based, heuristic-based, simple geometric roll-outs, LLM-based for high-level reasoning, etc)
- → RL policies need to deal with either discretization of the action space or with approximations of the policy gradients

What if:

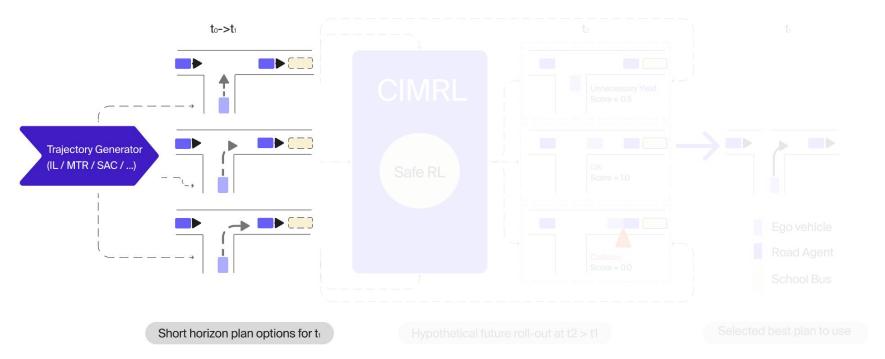
- We will re-use the imitation-based existing models, but
- → Use RL algorithm to select from multiple IL generators

Plus:

We can concentrate on safety by doing hypothetical future roll-outs and remove / downvote dangerous plans, and provide behavior realism from IL

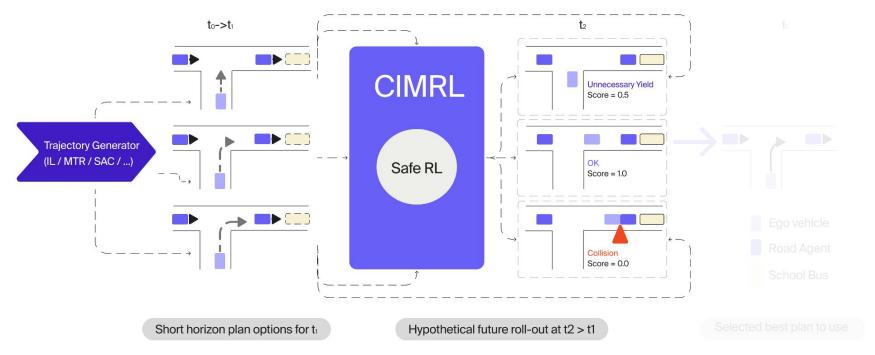
11

CIMRL: Combining IMitation and Reinforcement Learning



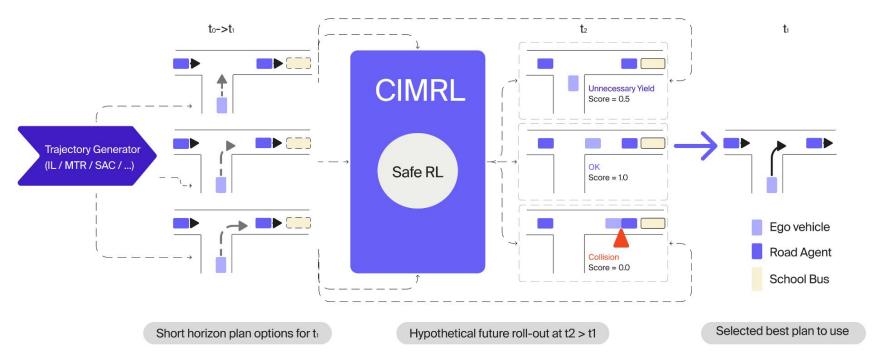
Booher, Jonathan, et al. "CIMRL: Combining IMitation and Reinforcement Learning for Safe Autonomous Driving." 2024.

CIMRL: Combining IMitation and Reinforcement Learning



Booher, Jonathan, et al. "CIMRL: Combining IMitation and Reinforcement Learning for Safe Autonomous Driving." 2024.

CIMRL: Combining IMitation and Reinforcement Learning

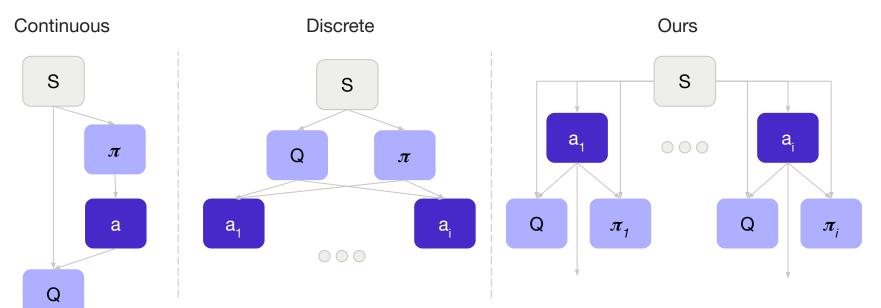


Booher, Jonathan, et al. "CIMRL: Combining IMitation and Reinforcement Learning for Safe Autonomous Driving." 2024.

CIMRL: Scoring

One more (:wink:) combination of:

- → Continuous Action Space: able to provide the scoring for literally any planned trajectory
- → **Discrete** Action Space: able to provide the correct probability distribution on top of any finite set of traject



Haarnoja, Tuomas, et al. "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor." 2018.

Christodoulou, Petros. "Soft actor-critic for discrete action settings." 2019.

CIMRL: Advantages

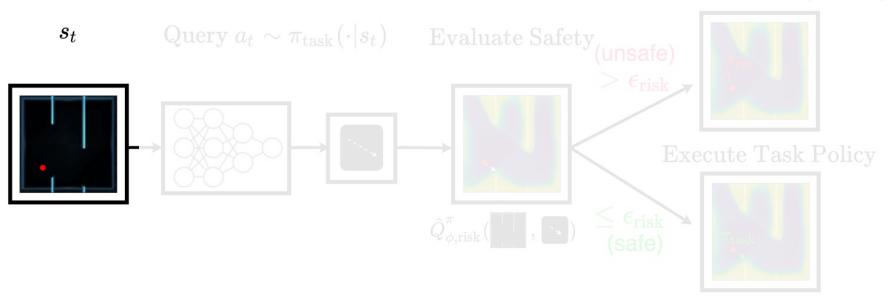
Scalability

→ Benefits from a lot of data which is directly improving IL-based methods

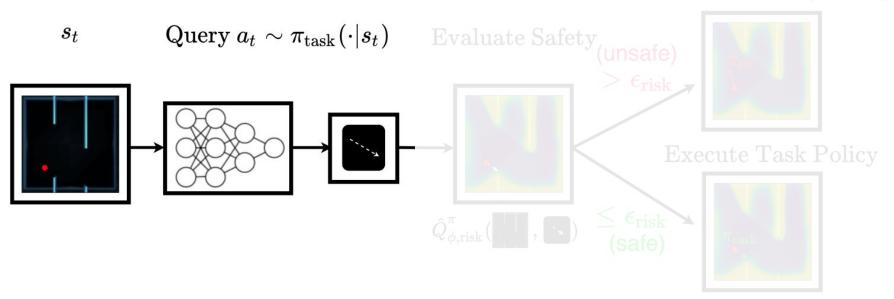
Flexibility

- → Can be used as a framework for incorporating literally any Prediction or Planning model
- → We can also incorporate the scores from those models as well!

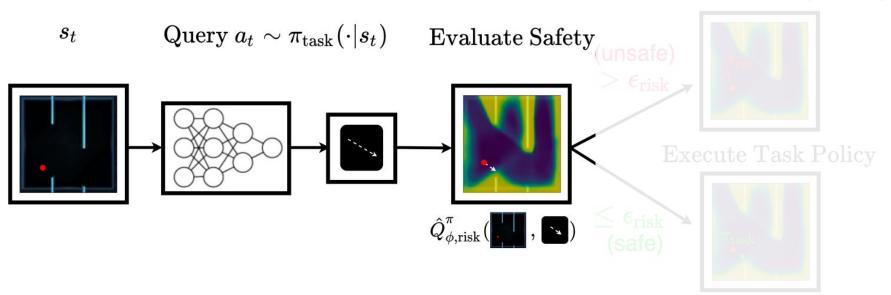
Execute Recovery Policy



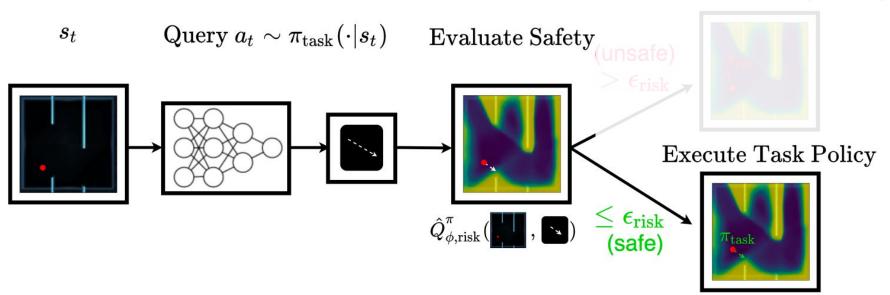
Execute Recovery Policy



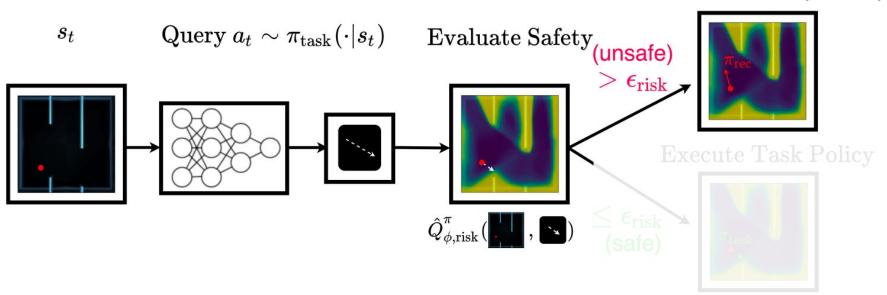
Execute Recovery Policy



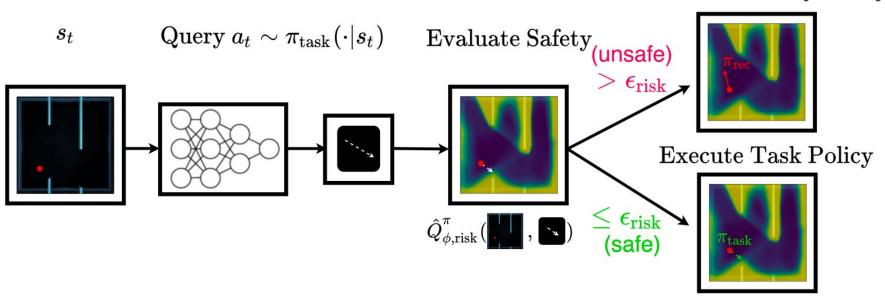
Execute Recovery Policy

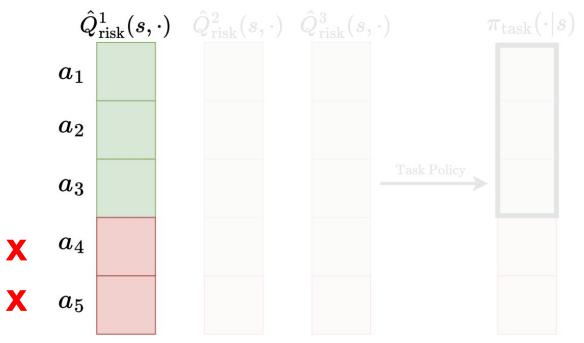


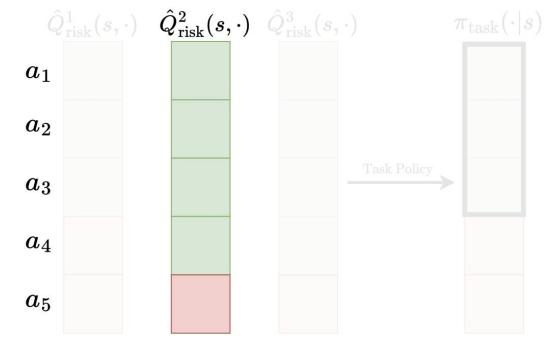
Execute Recovery Policy

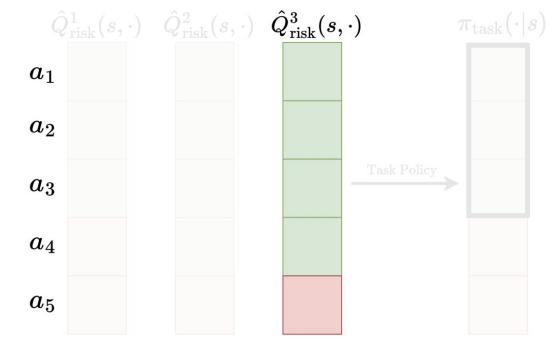


Execute Recovery Policy

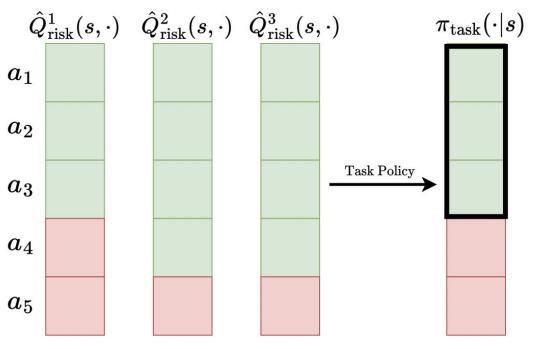


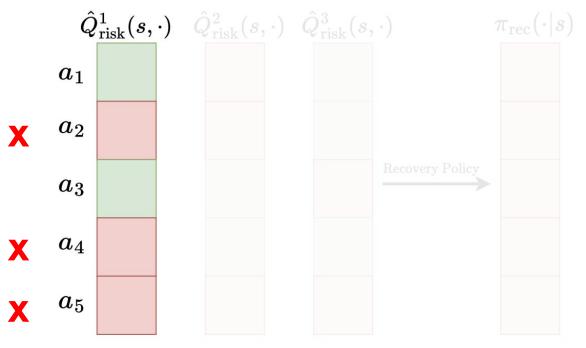


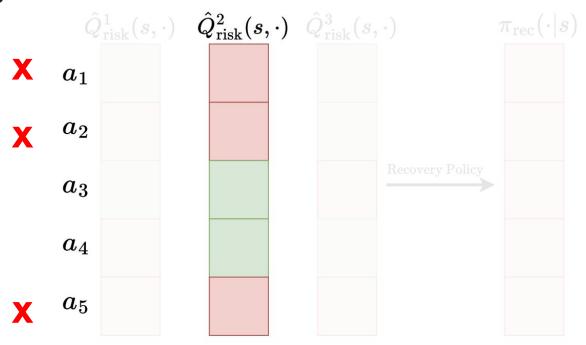


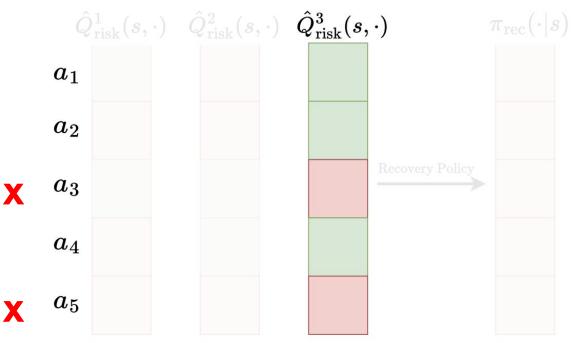


If there exist safe actions then sample from re-normalized task policy.

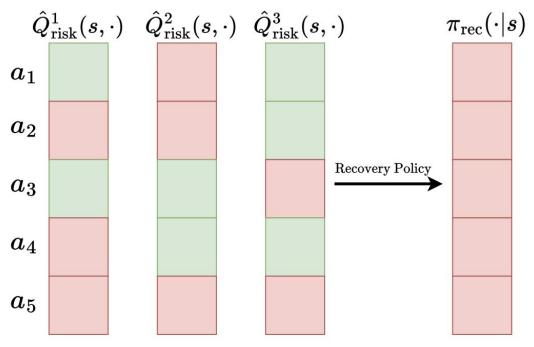


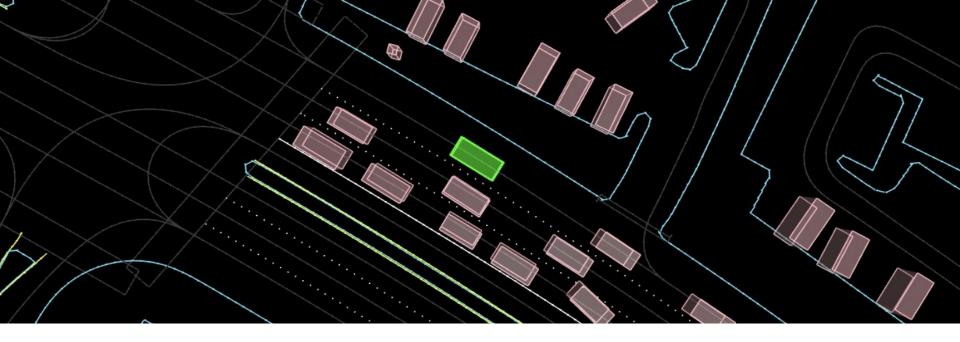






Otherwise sample from recovery policy





CIMRL

Closed-Loop Simulator

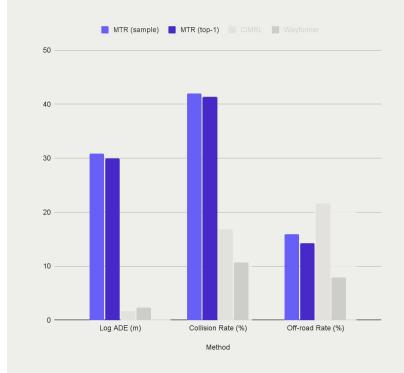
Waymax:

- → Can be used for training
- → Data-driven
- → TPU / GPU support

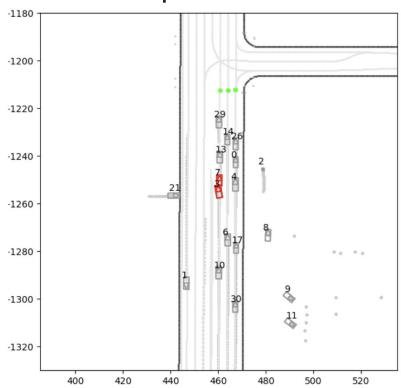
Closed-Loop Results: Waymax

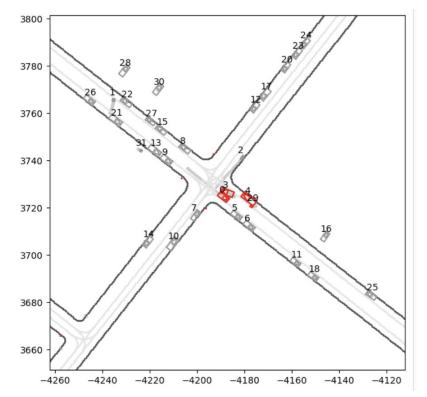
- → Kinematic Feasibility: pretty meaningless for any Prediction-based method
- → Route progress ratio: do not have the access to route info (sdc_path)

Using Waymax: No Sim Agents, Delta Action Space



Open-Loop model in Closed-Loop

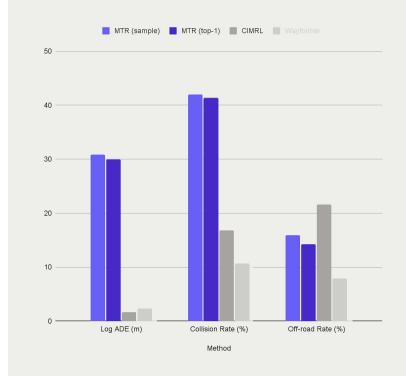




Closed-Loop Results: Waymax

- → Kinematic Feasibility: pretty meaningless for any Prediction-based method
- → Route progress ratio: do not have the access to route info (sdc_path)

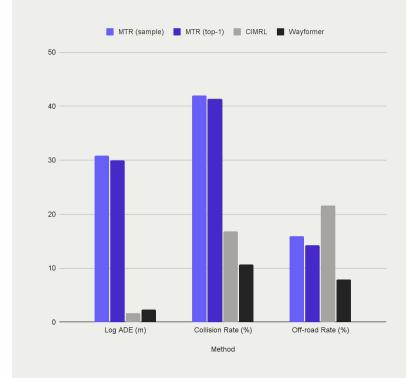
Using Waymax: No Sim Agents, Delta Action Space



Closed-Loop Results: Waymax

Wayformer has the access to route info :)

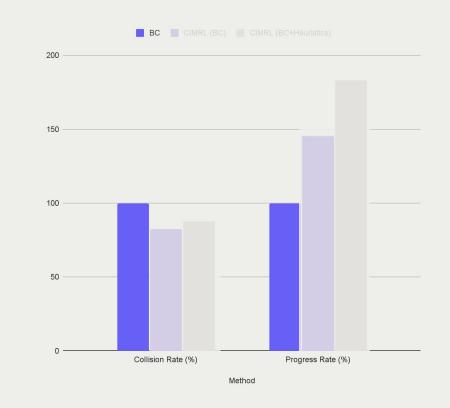
Using Waymax: No Sim Agents, Delta Action Space



Closed-Loop Results: In-house

- → Challenging interactive in-house scenes where log pose divergence is usually inevitable
- → Route progress ratio: makes sense
- → Log ADE: doesn't

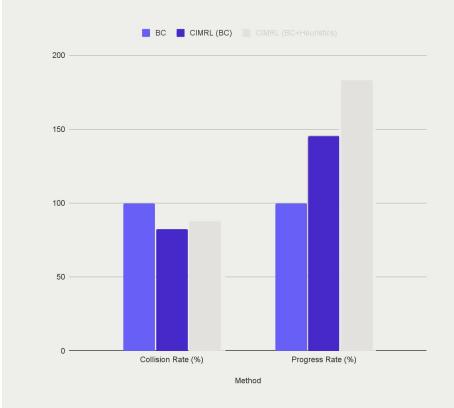
Using Internal data and Sim (Log replay)



Closed-Loop Results: In-house

- → Challenging interactive in-house scenes where log pose divergence is usually inevitable
- → Route progress ratio: makes sense
- → Log ADE: doesn't

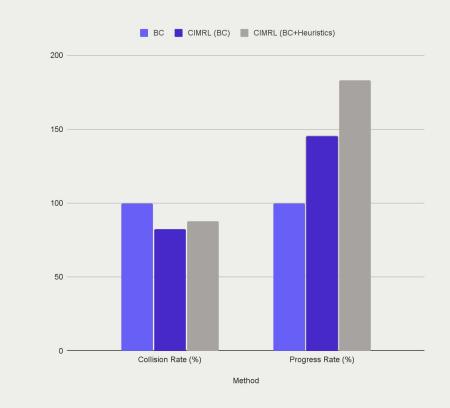
Using Internal data and Sim (Log replay)

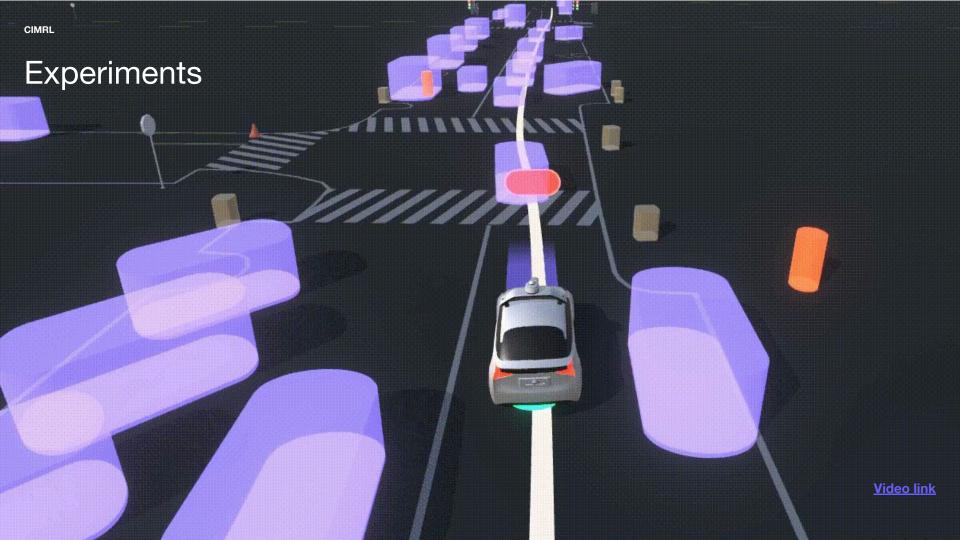


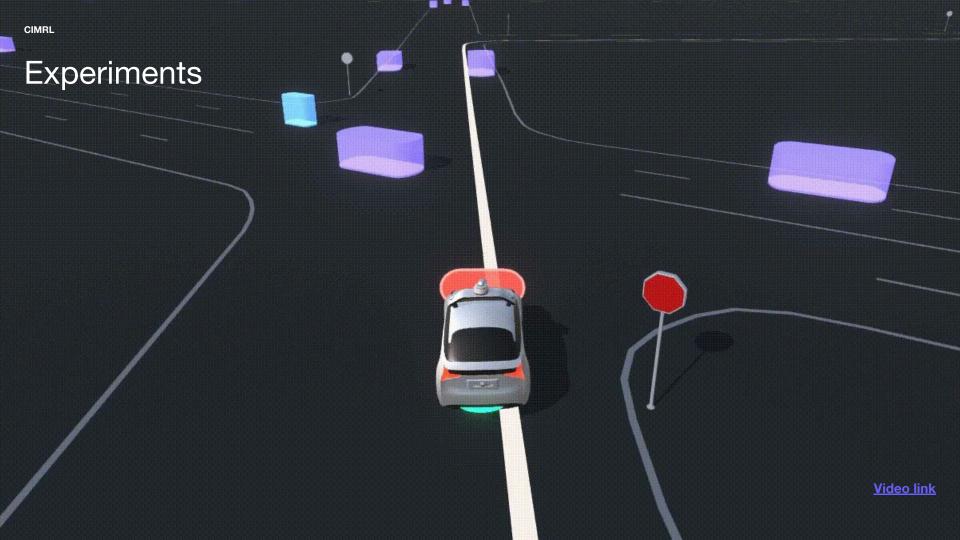
Closed-Loop Results: In-house

- → Challenging interactive in-house scenes where log pose divergence is usually inevitable
- → Route progress ratio: makes sense
- → Log ADE: doesn't

Using Internal data and Sim (Log replay)







CIMRL: Limitations

... And still dependent on the quality of the underlying ego plan generation procedure.

(01)

Reward definition is not straightforward (but *mitigatable*)

02

Rare sparse events are challenging to learn (i.e. *collisions*) esp. for advanced planners

(03)

Sample inefficient – takes many simulation steps to learn (huge state-action space)

Conclusions

(01)

CIMRL is really scalable and flexible framework of combining approaches

(02)

Learning selection provides long-horizon reasoning

03

There is no such a thing as "too much safety":(

nuc