

September 24, 2024

Middle Mile & Foundation Models

Aleksandr Petiushko, Head of Al Research

IEEE ITSC 2024, FMAD

02 MIDDLE MILE

O3 FOUNDATION MODELS

04

CONCLUSION

Gatik Company Overview

Our Mission

To deliver goods safely and efficiently using our fleet of autonomous trucks.

Our Locations California, US – HQ Mountain View

Texas, US Fort Worth

Arkansas, US Bentonville

Ontario, Canada

Toronto

Our Strong Strategic Partnerships Enable Commercialization At Scale

Middle Mile

Pros and Cons

MIDDLE MILE

Operational Design Domain

A lot of **differences** in comparison to long haul (highway) trucking:

- Vulnerable Road Users (VRUs)
- Includes **semi-urban** use case
 - E.g., intersections
- Lower speed

NIST ADS SAFETY MEASUREMENT AND OPERATIONAL DESIGN DOMAIN

MIDDLE MILE Routing

We can concentrate on the **predefined routes**:

- Less and fixed routes means a smaller ODD
- Route selection can target different objectives
 - E.g., safe roads, optimizing time / costs
- Regularity of trips: positive feedback loop

Image <u>source</u>

MIDDLE MILE Autonomy I

- Mapping: less burden on *online* mapping
 - Still need to be able to detour and re-route
- **Perception**: **less** large open space *artifacts*, but more focus on VRU detection and tracking
 - Overall trucking problem: sensor positions are quite different from those in the open source data

MIDDLE MILE Autonomy II

- **Behavior**: closer to robotaxi/urban use case
 - E.g., occlusion detection and handling
- **Controls**: need in high precision / maneuverability in case of VRU

MIDDLE MILE

Data

- Less coverage, but
- More route-specific behavior diversity
- Still need to *proactively* collect data of reasonable area around the fixed routes

MIDDLE MILE Validation

- Smaller ODD means faster validation cycle
 - Combinatorial explosion of all possible use cases is quite compact
- Lower speed: better safety expectation
- VRUs: still need in <u>generalizable</u> solution

Foundation Models Why?

FOUNDATION MODELS Middle Mile: Challenges

Restriction != Simplicity

Actually, Middle Mile is a combination of everything (although on a smaller scale): domains, use cases, behaviors, etc.

¢

Safety and OOD

No any collected data of a reasonable size would contain super rare safety-critical examples. AD deployment is dependent on its safety.

¢

Adjustability

Trucking use case is far from usual robotaxi domain: different sensors, different planning-control feedback loop, stricter requirements on perception.

Adaptation

Need to quickly adapt to road works, closed roads, incorrect prior information. Moreover, even for one truck, its dynamics is different w.r.t. its load.

FOUNDATION MODELS

Why FMs for Middle Mile?

aLM-E: An Embodied Multimodal Langua ven <emb> Q: How to grasp blue block? A: F ? ViT Large Language Model (PaLI Control

Image <u>source</u>

Flexibility

Through the Visual-Language Model unified interface, any data modality encoders can be used (and even in any combination and order!).

Data

No need in huge pre-training (it's already done!). Auto-labeling / open-vocabulary capabilities save a lot of resources.

Generalization

💋 Gatik

Generalization to raw inputs, different locations, and multi-modal behaviors including out-of-distribution analysis.

Image source

18

FOUNDATION MODELS

Examples of Foundation Models in AD

DriveLM: Driving with Graph Visual Question Answering

LMDrive: Closed-Loop End-to-End Driving with Large Language Models

Hao ShaoYuxuan HuLetian WangSteven L. WaslanderYu LiuHongsheng Li

DriveMLM Aligning Multi-Modal Large Language Models with Behavioral Planning States for Autonomous Driving

Wenhai Wang^{2,1*}, Jiangwei Xie^{3*}, ChuanYang Hu^{3*}, Haoming Zou^{4*}, Jianan Fan^{3*}, Wenwen Tong^{3*}, Yang Wen^{3*}, Silei Wu^{3*}, Hanming Deng^{3*}, Zhiqi Li^{5,1*}, Hao Tian³, Lewei Lu³, Xizhou Zhu^{6,3}, Xiaogang Wang^{2,3}, Yu Qiao¹, Jifeng Dai^{6,1⊠}

DOLPHINS MULTIMODAL LANGUAGE MODEL FOR DRIVING

Yingzi Ma¹ Yulong Cao² Jiachen Sun³ Marco Pavone^{2,4} Chaowei Xiao^{1,2}

DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model

Zhenhua Xu¹ Yujia Zhang² Enze Xie^{3*} Zhen Zhao⁴ Yong Guo³ Kwan-Yee. K. Wong¹ Zhenguo Li³ Hengshuang Zhao^{1*}

DRIVEVLM: The Convergence of Autonomous Driving and Large Vision-Language Models

GPT-DRIVER LEARNING TO DRIVE WITH GPT

Jiageng Mao¹ Yuxi Qian¹ Junjie Ye¹ Hang Zhao² Yue Wang¹

VLP: Vision Language Planning for Autonomous Driving

Chenbin Pan^{1*} Burhaneddin Yaman² Tommaso Nesti² Abhirup Mallik² Alessandro G Allievi² Senem Velipasalar¹ Liu Ren²

FOUNDATION MODELS

The Problems with Foundation Models in AD

Efficiency

No one HW architecture allows at least 10 Hz inference now. With CoT, RAG, and other techniques the latency only increases.

Pre-trained AD model

There is no pre-trained model that can be used as a plug-and-play solution. Open-source LLMs need careful fine-tuning.

Implicit bias

While there is a big hope of a FM to capture all aspects of driving, it would be quite hard to get the real understanding of its knowledge frontiers: hallucinations, uncertainty estimation, etc.

AD Specifics

3D (and unstructured point clouds in particular) generalization performance is far from being at acceptable level. Much stricter requirements on hallucination avoidance (safety). Custom Chain-of-Thoughts (Localization+Mapping – Perception – Prediction – Planning – Control).

Conclusion

Conclusion

- Middle Mile is a unique intersection of tasks, requirements, and challenges
- Foundation Models are eventually inevitable for the Middle Mile – mostly because of their generalization capabilities
- 3. We still need to **pave the road** for the **safe** and **practical** applications of FM in AD

Thank you!

