

We own the middle mile.

10

ISUZU

Intelligent Mapping Solutions Aleksandr Petiushko, Head of AI Research WACV 2025, <u>COOOL</u>

March 4, 2025

Company Overview

WE OWN THE MIDDLE MILE.

Background

🐓 Gatik

The Leader In Autonomous Short-Haul Logistics

- Founded in 2017 by veterans of the autonomous technology industry
- Customers: Walmart, Kroger, Tyson Foods, Georgia-Pacific and more
- Current locations include Texas, Arkansas & Ontario (Canada)
- Expanding to new markets throughout 2025
- Use case leverages point-to-point movement of goods to optimize safety and efficiency and meet customer needs

Class 8 vehicles for highway-only driving between hubs

Distribution Center

Highway only; hub-to-hub; Definition Class 8; >400 miles

Technological Differentiation

Highway-only capabilities

Class 3–7 cold chain capable vehicles for urban, semi-urban, and highway driving environments

Gotik

Distribution Center

Depot/Locker

Highway & Semi Urban; DC-hub-store; short-haul; Up to 400 miles

Purpose built technology for fixed & repeatable routes/networks. Tailored for urban, semi-urban & highway driving

Sorting Center

Pickup Hub

Slower moving vehicles with limited capacity

Home

Urban; store-to-home; smaller robots; 1-5 miles

Geofenced use-cases Leading to countless route combinations

We own the middle mile.[™] ⁵

Making the Supply Chain More Responsive and Efficient

Service	Savings	Safety
Increase Product Flow	Lower Costs	Reduce Acciden
Driver Shortage Hedge	Higher Utilization	Improve
Dedicated Capacity	o O Tracking	수 수 수 Increase
99%+ Delivery On-Time	Savings 20%+	Exemplary Safet

ety Record

We own the **middle mile**.[™] 6

Structured Autonomy

Customized solution for restricted route and roadway interactions **shorten validation time** and **optimizes for safe operations**

- **Hyper-Constrained** | Custom-fitting AV technology for known routes
- Route Optimized for Safety | Pre-defined and risk-mitigated

Allows for Incremental Expansion of Operational Design Domain

- Broader ODDs like Geofenced regions: Value proposition is to enable transport between many to many locations. Solving for a single route doesn't really provide any value. A given route connection may not even see any customer demand during service
- Before deployment, each of these route variations need to be validated

Each route variation, might or might not provide value but to enable the service all nodes need to be considered, developed and validated

Approach needs to be generalized and resources are required to be spent to validate all routes

💋 Gatik

- day, 7 days a week

Each route(s), provides guaranteed value for service.

Targeted use of resources for development & validation of each route also very high confidence validations

• Gatik's fixed route ODDs: Value proposition is to enable transport between one to one location. Solving for a single route immediately provides value - Promise of trips - multiple times a

• Before deployment, only specific route(s) needs to be validated.

We own the middle mile.[™] ⁸

R

D

G

Al-inspired

Mapping Approaches

* Prepared together with Amir Yazdani, Sr. Research Scientist

WE OWN THE MIDDLE MILL.

Mapping Requirements

A Balancing Act

Efficiency

2

GATIK AI

190

We own the middle mile.™ 10

SD vs HD Maps

Maps

SD Maps

are available in abundance, but the information provided is very limited.

[Woven by Toyota blog]

HD Maps

VS

are costly and hard to adapt but are needed **now** for safe autonomous driving.

Rasterized vs Vectorized

Rasterized Maps

require CNNs, offer limited receptive fields and are computationally heavy.

["<u>VectorNet</u>...", Gao et. al., 2020]

VS

Vectorized Maps

require GNNs / Transformers and offer polylines with attributes including map elements and motion trajectories

["Lift, Splat, Shoot...", Philion et. al., 2020]

["<u>MapTRv2</u>...", Liao et. al., 2023]

Problem with HD Maps

- Cannot fully rely on pre-collected HD maps
- Need online adaptation for:
 - Road works
 - Closed lanes / roads
 - Map erros

Online vs Offline

Mapping

Offline

Data collection process and assigned fleet using sensor data, rule-based algorithms and manual labor

Online

["HD Maps Construction Based on Visual Sensor: A Comprehensive Survey", Tang et. al., 2023]

Map is created / adapted during real-time driving using prior information and on onboard AI engine

We own the middle mile.[™] ¹⁶

Online Mapping vs Offline Mapping

	Offline Mapping	
Sensors	Abundant (even multiple vehicles)	
Cost	High (due to manual labor)	
Scalability	Low (due to high cost and manual work)	
Quality	High	
Computing/time requirements Gatik	Mitigated (no need in real time)	

Online Mapping

Limited (by one vehicle)

Lower (due to automatic updates)

High

Medium

High (real time processing and onboard HW)

We own the middle mile.™ 17

Online Mapping

Challenges

• Real-Time Processing

 Maps must be updated as the vehicle moves through the space w/o delay

GPU accelerators to the rescue

• Scene understanding

 Series of traffic cones -> a new lane boundary

High-level reasoning (e.g., by LLM/VLM)

Online Mapping

Challenges

Consistent representation

• Hard to maintain because of the diverse geometric structures of map elements in real time

Need **flexible** mapping format

Lack of information

• Occlusion

Repeatable routes help

["Video-based Deep Matching for Object Occlusion Detection", Samblas et. al.]

We own the middle mile.™ ¹⁹

Representation Efficiency

Map Formats

- There is no <u>unified</u> format of an HD map
 - A variety of open and proprietary formats

• Top-down representation

- Historically, one of the first format used by various companies since the beginning of 2000s
- Representation of road as an imaginary center line
 - Any info about road element (e.g., lane) is added as an attribute to it
- Extremely **complex** and **implicit** representation

We own the middle mile.™ 20

Representation Efficiency

Map Formats: Flexibility

• Bottom-up representation

- Lanelet2 (2018)
- Primitives:
 - points > linestrings > polygons > lanelets
- A different approach: neighbourhood **relations!**
- Able to encode the **explicit** representation of lanes
 - Even **basic** scheme of **interaction** between an agent and a map element
- Incorporated in ROS 1/2

We own the middle mile.[™] ²¹

No Prior Info Usage

Dependent on what prior information to use:

- No prior knowledge
 - Only perception input
 - Use case: baseline, initial creation

points > linestrings > polygons > lanelets

We own the middle mile.[™] ²²

Prior: SD Map

Dependent on what prior information to use:

- **SD** (Standard Definition) map
 - E.g., Google / OpenstreetMap
 - Use case: scaling / cost saving

We own the middle mile.[™] ²³

Prior: (old) HD Map

- (Old) Previous version of HD map
 - Can be partially wrong, inconsistent, outdated, etc.
 - Use case : continuous update of maps / providing the correct info for downstream
- Benefits a lot from <u>repeatable</u> routes!

["<u>Mind the map!...</u>", Sum et. al., 2023]

We own the middle mile.[™] ²⁴

...and even more!

We can even **remove** the **decoding** part and work completely on top of latent representations:

- No explicit map output
 - Can be applied literally to any method above by cutting out the last decoding stage
 - **Use case:** going toward *end2end* architecture w/o the need in interpretability
 - Can be hard to **validate** the correctness of the internal map representation

We own the middle mile.[™] ²⁵

Mapping

is a very important part of autonomous driving, permeating the whole Driving Stack

Cost, Efficiency, and Safety

are the axes to consider the right choice of mapping approach

AI-Driven Mapping

helps with the above axes, especially having **repeatable routes**

Research Opportunities

We are hiring! •

- **Research Scientists** Ο
- ML Infra Engineers Ο
- **Directions**: Ο
 - Mapping
 - Perception
 - Behavior (Prediction and Planning)
 - **End-to-end Systems**
 - Simulation
 - Safety and Uncertainty
- Apply here: https://gatik.ai/careers/

Mountain View, CA

Q&A

Your Questions, Our Expertise

4