Uncertainty & Safety

In Autonomous Driving

Vladislav Isenbaev

Zhenli Zhang

Shashank Ojha

Constantin Hubmann

Nima Mohajerin

Yu Yao

Taiqi Wang

Jiawei Zhang

Xuan Yang

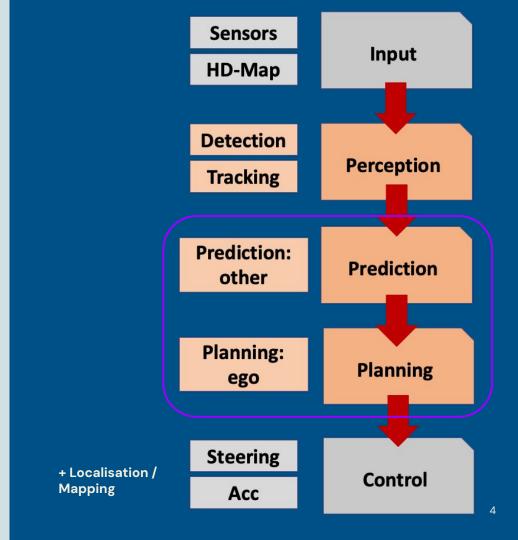
Bo Li

1. Uncertainty and Safety

- 2. Uncertainty in AD: Prediction
- 3. Safety in AD: Planning
- 4.Conclusion

AD Stack

- The simplified overview of the classical Autonomous Driving (AD) Stack
 - Let's focus on Prediction and Planning in AD



Uncertainty

- Prediction of other agents' motion
- Lack of training data Epistemic
 Uncertainty
 - It can notify the problematic events

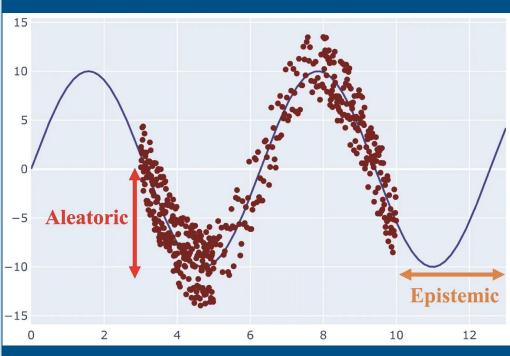


Image <u>source</u>

Safety

- What about safe Planning?
- Let's use the Markov Logic Network ¹!
 - California Driver's <u>Handbook</u>

[Current Context] + [Retrieved Context]

Human: What is the action of ego car?

LLM: The car is moving forward

LLM: The car is slowing to a stop

Weight Formula (Knowledge Rules)

- 10.02 SolidRedLight(x) => $\neg Accelerate(x) \land \neg LeftPass(x) \land \neg Yield(x)$
- 8.03 $StopSign(x) \Rightarrow Stop(x) \lor Decelerate(x) \land \neg PullOver(x)$
- 8.47 NoLeftTurnSign(x) => \neg TurnLeft(x)
- 10.51 MLLMKeep(x) => Keep(x)
- $10.55 \quad MLLMStop(x) => Stop(x)$

...

Violate safety knowledge Should be Stop

- 1. Uncertainty and Safety
- 2. Uncertainty in AD: Prediction
- 3. Safety in AD: Planning
- 4.Conclusion

Uncertainty: Motivation

- Previous version used a highly SW-optimized version of a Bayesian Filter
 - A combination of a *Predictor* (what to *imagine*) and a *Tracker* (what we see)
- Unfortunately, it highly depends on the Predictor model
- Goals:
 - To design the approach mostly independent on the specific model architecture
 - To deal with problems of training data incompleteness

$$p_t = p_{t-1} \cdot P(z_t|Predictor) +$$

$$+(1-p_{t-1})\cdot P(z_t|Tracker)$$

where:

- p_t and p_{t-i} current and previous timestamp probabilities of the trajectory
- z_r: trajectory

Uncertainty: Idea

"Out of Distribution" (OOD) concept

Idea:

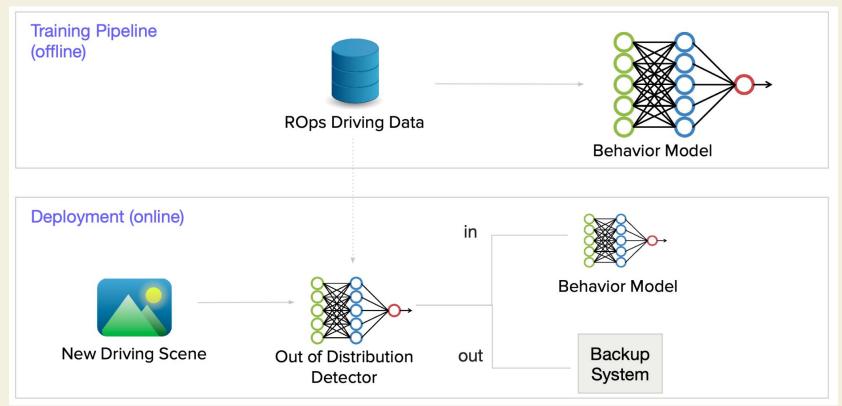
- Measure the OOD at the input of any ML model
- OOD = "haven't seen similar data during training"
- It is Epistemic (input) Uncertainty (lack of data)

Core **assumption**:

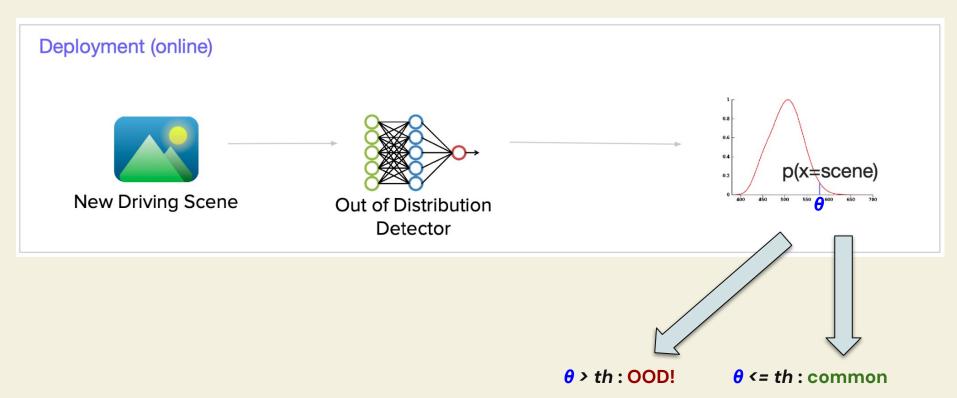
 We cannot guarantee anything about model's output if the input is OOD: it can be either good or bad

Image <u>source</u>

Implementation Scheme



OOD Module



Uncertainty: Approach

Proof-of-Concept approach:

- Density Estimator (DE) on top of the inputs to the Predictor
 - DE will provide the probability (or, equivalently, NLL) of the input to be in distribution (ID)
- Training dataset for DE = (subset of)
 Predictor training dataset
- Inputs = outputs of Behavior Encoder
- Levels of granularity:
 - Scene level at a specific timestamp
 - Even (track_id, ts) level

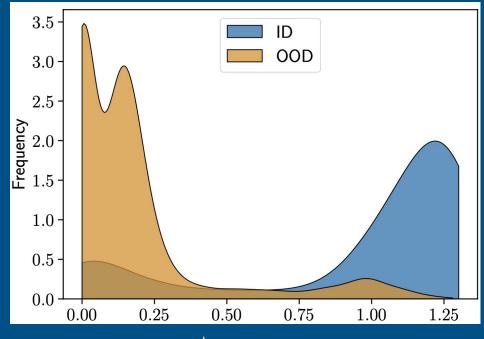


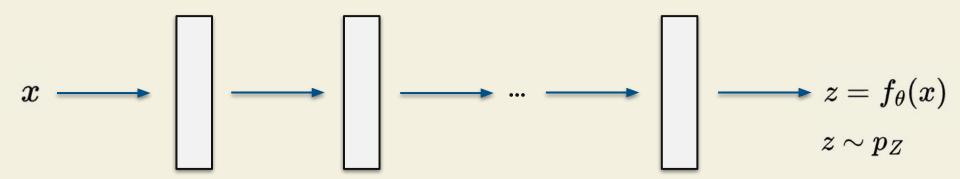
Image <u>source</u>

Uncertainty: First Tries

We started with Masked Autoregressive Flow 1 method

Idea: to use the invertible transformations and map the input to a known distribution (e.g., Gaussian)

(initially did some experiments with different embedding sizes: full and flatten)



Uncertainty: Final Try

Later, we continued with **Telescoping** Density-**Ratio Estimation** (TRE ¹)

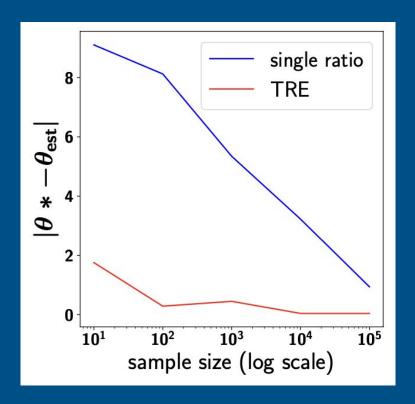
Idea:

- Add multiple levels of noise to the input and classify these levels of noise
- Make multiple intermediate steps

$$\circ \qquad x_k = \sqrt{1 - lpha_k^2 \cdot x_0 + lpha_k \cdot x_m}$$

- Loss Multinomial CE
 - \circ π_i prior class probability
 - \circ h_i unnormalized logits

$$L(h_1, \dots, h_C) = \sum_{c=1}^C \pi_c \mathbb{E}_{x \sim p_c} \left[-\log \pi_c - h_c + \log \sum_{k=1}^C \pi_k \exp\left(h_k(x)
ight)
ight]$$



Uncertainty: Eval Preparation

Datasets:

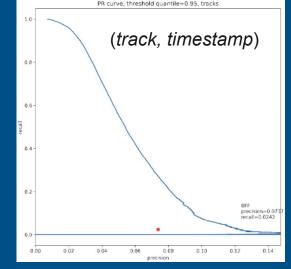
- OOD: a number of scenes from the Predictor Eval with the high Average Displacement Error (ADE) further filtered out by human experts
- Lowest ADE scenes
- Train scenes a subsample of the Predictor Eval

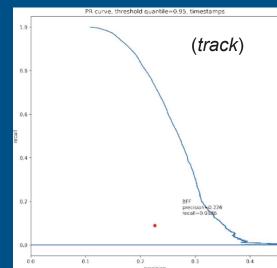
Granularity:

- A positive example at the specific ts if having a high DE
- Everything else is a negative one

Uncertainty: Precision vs Recall

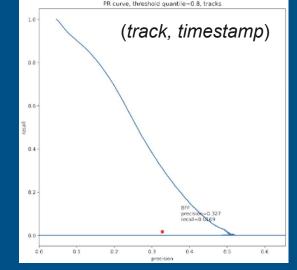
The closer to the *upper right* (higher precision and recall), the better

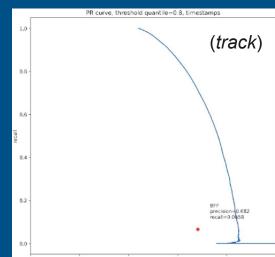




Uncertainty: Precision vs Recall

- The closer to the upper right (higher precision and recall), the better
- Results are kept for all the thresholds (80-95%)



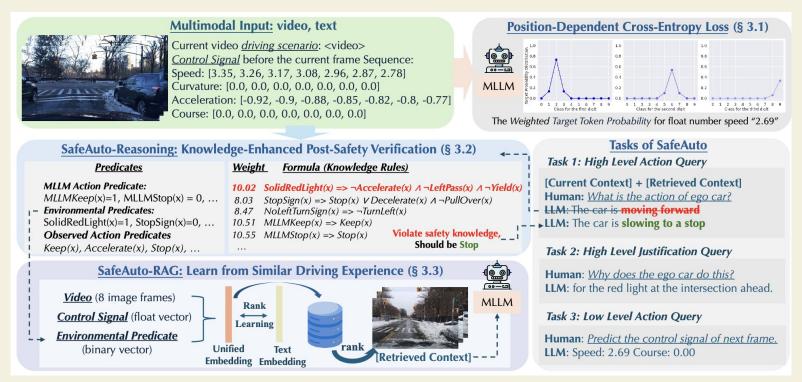


Result: TRE works better than MAF

Uncertainty Eval

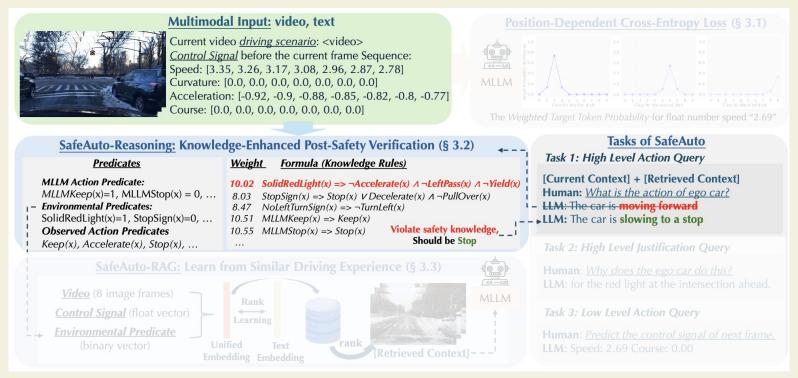
- 1. Uncertainty and Safety
- 2. Uncertainty in AD: Prediction
- 3. Safety in AD: Planning
- 4.Conclusion

Safety: the Overall Approach ¹



MLLM = multimodal large language model

Safety: the Overall Approach ¹



MLLM = multimodal large language model

Safety: Motivations

- Currently, most MLLMs are still data-driven
- Reliability and strict adherence to safety regulations are inevitable
- Let's use Probabilistic Graphical Models to verify the safety
 - Markov Logic Networks (MLN) to combine:
 - i. Domain knowledge
 - ii. Traffic rules

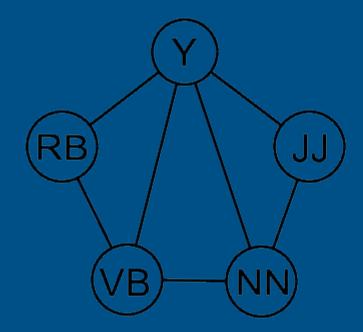


Image source

Safety: MLN

- MLN == a set of first-order logic formulas with an associated confidence weight w
 - w: to model uncertainty / deal with exceptions in real-world knowledge
 - Ex.: a traffic rule like "If there is a stop sign, then the vehicle should stop or decelerate" can be represented as the logical formula:
 - StopSign(x) \Rightarrow Stop(x) \lor Decelerate(x)

$$P(\mathrm{X}) = rac{1}{Z} \mathrm{exp} \left(\sum_{f \in F} \omega_f \sum_{a_f \in A_f} \phi_f(a_f)
ight)$$

where:

- X: set of all ground truth predicates
- Z: partition function
- $\phi_f(a_f)$: potential function for formula f with assignment a_f (=1 iff a_f)
- F: set of all formulas f
- A_f : set of all possible assignments to the arguments of formula f

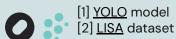
Safety: MLN in AD

- Predicates:
 - Unobserved U:
 - Vehicle should take (Stop, Accelerate, TurnLeft)
 - Observed O:
 - MLLM Action (MLLMStop, MLLMAccelerate, MLLMTurnLeft)
 - MLLMStop => Stop
 - Environmental (StopSign, SolidRedLight)
 - From video, using YOLOv8¹ trained on LISA²
 - + Historical Control Signal (HCSTurnLeft)

$StopSign(x) \Rightarrow$

 \Rightarrow Stop(x) \lor Decelerate(x) $\land \neg$ PullOver(x)

Example of environmental *observed* predicate



Safety: MLN in AD - Process (1)

Inference

Obtain the most realistic *unobservable*U given the *observable* O using the trained MLN

Training

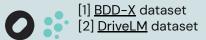
Obtain the weights w_f to maximize the P(U|O) with BDD-X¹/DriveLM² data

Safety verification

After inferring the U based on O from MLN, if it contradicts MLLM's action (a potential safety violation / breach of critical traffic rules) => need to overwrite the high-level action query and re-prompt the MLLM again

$$\mathcal{U}^* = \arg\max_{\mathcal{U}} P(\mathcal{U}|\mathcal{O})$$

 ω_f



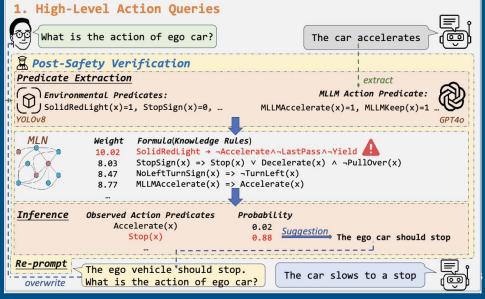
Safety: MLN in AD - Process (2)

MLN

 Serves as a post-verification layer able to change the unsafe MLLM system initial suggestion

Improving the overall trust to AD

system



Safety: MLN in AD - Results

 Ablation study on the impact of each module on the traffic rule violation rate of MLLM-predicted actions

Method	BDD-X	DriveLM
Base	11.64%	1.03%
PDCE	8.44%	1.46%
PDCE+RAG	5.90%	1.03%
PDCE+RAG+MLN	4.50%	0.75%

(lower the better)

DriveLM use case

Method	High-Level Behavior			Motion
Wethod	Accuracy	Speed	Steer	ADE
Base	60.58	64.57	80.29	0.86
PDCE	63.21	67.88	79.27	0.85
PDCE+MLN	66.86	71.39	80.29	0.85
PDCE+RAG	74.01	79.27	81.61	0.84
PDCE+RAG+MLN	74.61	79.85	81.91	0.84

- 1. Uncertainty and Safety
- 2. Uncertainty in AD: Prediction
- 3. Safety in AD: Planning
- 4.Conclusion

Uncertainty Outcomes

- EU / EBM model works better than the Bayes' one
- Limitations
 - Variability in the **ADE threshold**: objects, scenes, ts, etc
 - No any time smoothing for the OOD score
 - One more ML model
 - When the ML model becomes better, the training / eval data becomes obsolete

Safety Outcomes

- Markov Logic Network provides an additional layer of safety in AD
- Limitations
 - Need to understand the Markov-based reasoning
 - Doesn't work equally best for every dataset
 - One more ML model

BDD-X use case

Method \ Metric	Action / Meteor	Action / Accuracy	Justification / Meteor
Base	29.2	61.75	13.2
PDCE	29.3	61.94	13.2
PDCE+MLN	29.4	62.97	13.2
PDCE+RAG	35.3	91.00	13.9
PDCE+RAG+MLN	₃₀ 35.5	92.18	14.0

Final Conclusion

Reliability

Comes through the input-based Epistemic Uncertainty

Safety

 Achieved through the output-based correction by Markov Logic Network

• Question to be Answered

 Can we combine everything at one and big (~foundation) model?

Thanks!

