Autonomous Driving

Introduction, Technologies, and the Planning Problem

Contributors

Ashwin Balakrishna

Jonathan Booher

Aleksandr Petiushko

Ishan Gupta

Khashayar Rohanimanesh

Vladislav Isenbaev

Junhong Xu

Wei Liu

AD and SDV

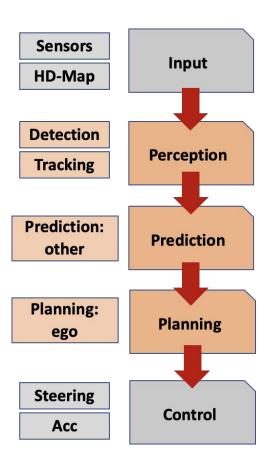
- **AD** = Autonomous Driving: the *task*
- **SDV** = Self-Driving Vehicle: the *car*
- AD is one of the most complex and difficult tasks, both theoretically and practically

Image <u>source</u>

<u>Safety</u> of SDV and other agents on the road is crucial

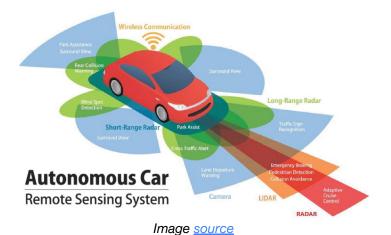
AD: Classical ML Stack of Technologies

- The main software parts are the so-called P³:
 - Perception, Prediction and Planning
- Hardware parts:
 - Input: Sensors
 - Output: Control (steering, acceleration)
- High-Definition Map as the helper
 - HD-Map contains info about the road

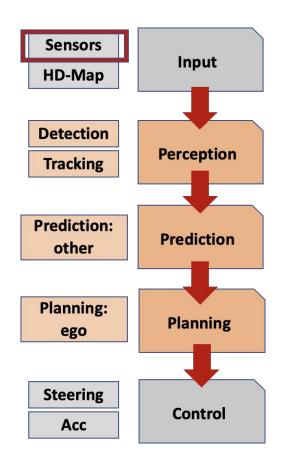


SDV: Sensors

- Various sensors are used:
 - LIDAR
 - Radar
 - Ultrasonic
 - Cameras (x N)



- Problems:
 - Expensive
 - Hard to synchronize



AD: HD-Map

- Helpful for prediction and planning
 - Contains information about a road:
 - Lanes, crosswalks, traffic lights, etc.
- Problems:
 - Every company has its own format
 - Significant overhead

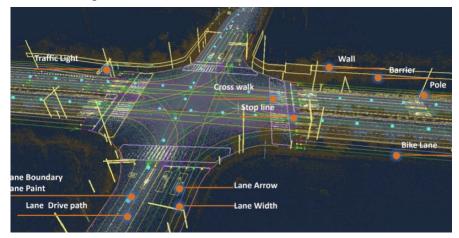
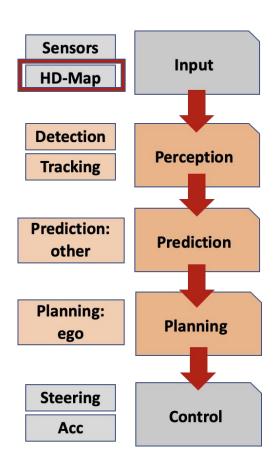


Image source

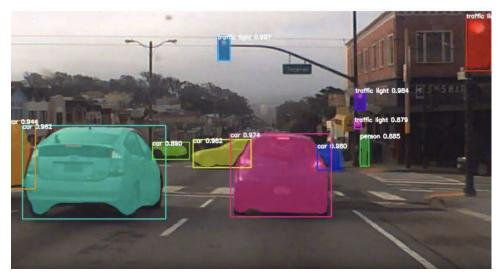


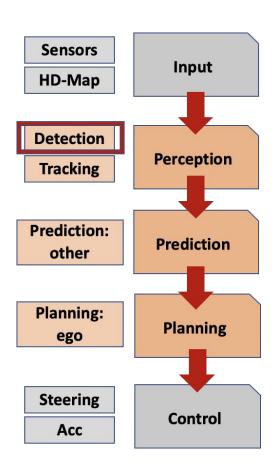
AD: Detection

- The first step of the Perception part:
 - Detection (segmentation, depth-estimation, etc.) of the objects around

• Problems:

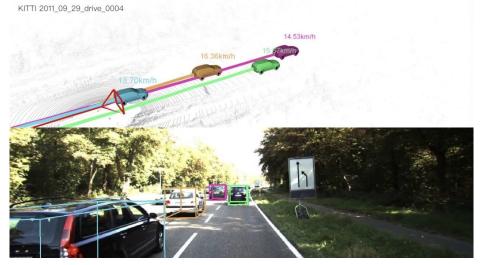
Long tail (small and unusual objects) and anomalies

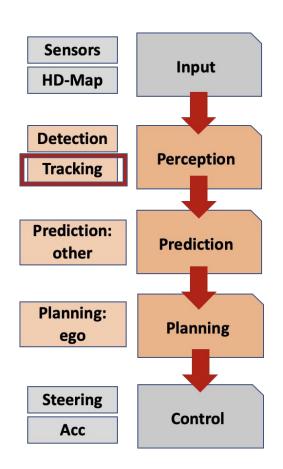




AD: Tracking

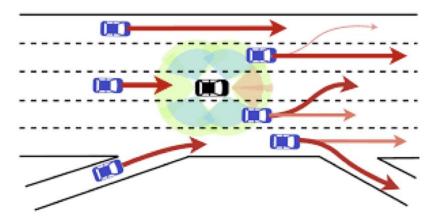
- The second step of the Perception part:
 - Tracking of the detected objects and estimation of their coordinates for the Prediction part
- Problems:
 - Track association of flickering objects





AD: Prediction

- Future trajectories prediction of all surrounding objects based on the tracking history and HD-Map
 - Usually, 1-10 second
- Problems:
 - Multi-modality for recall



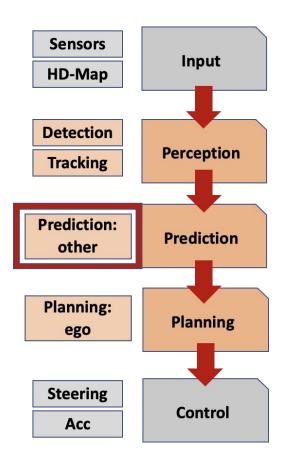


Image source

AD: Planning

- Planning of SDV future actions based on the predictions and HD-Map
- Problems:
 - Consistent joint prediction and planning

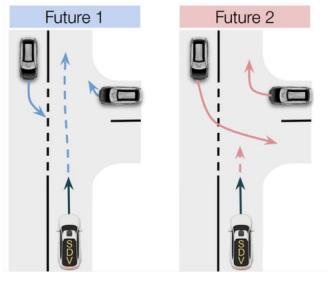
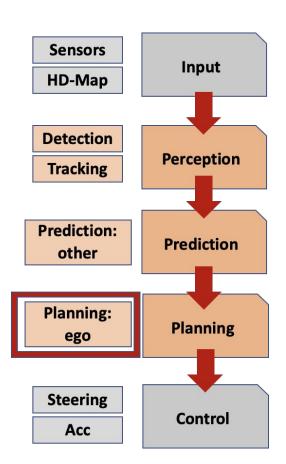


Image source



SDV: Control

- Realization and control of SDV actions based on motion plan
 - Steering control, acceleration control, etc.

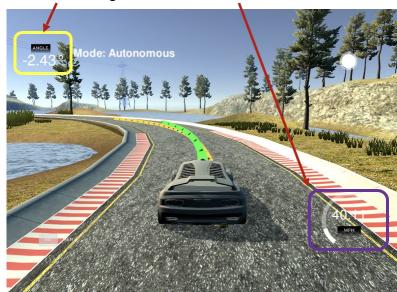
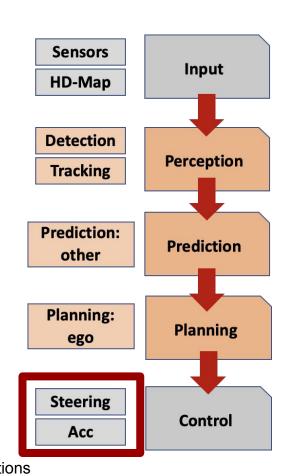


Image source

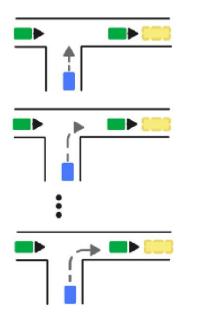
Problems:

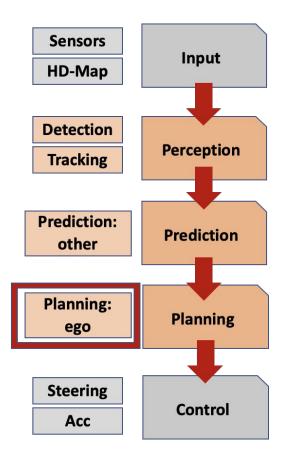
Dynamic and kinematic limitations



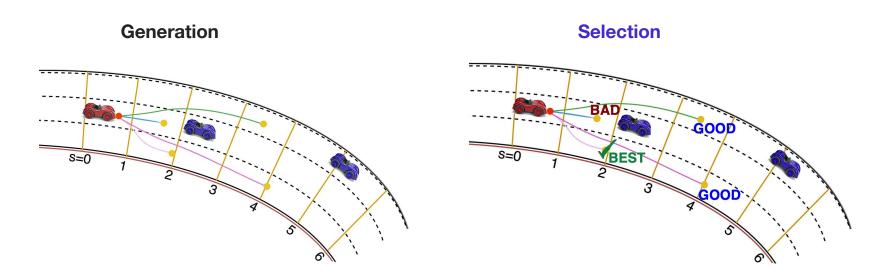
How to choose the right plan?

• Need a scorer!





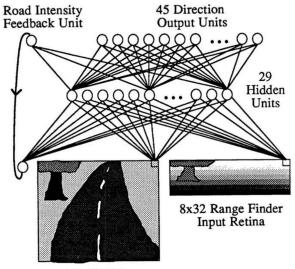
Plan Generation vs Plan Selection



Plan Generation vs Plan Selection (Image source)

Let's **combine** two worlds!

Imitation Learning



30x32 Video Input Retina

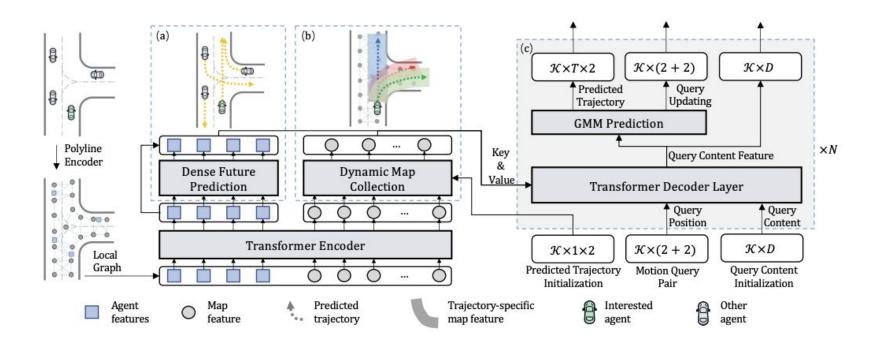
Figure 1: ALVINN Architecture

"NN can accurately drive the Ego Vehicle at a speed of 1/2 mps along a 400 m path through a wooded area under sunny fall conditions."

- Behavior Cloning from 1988 (!)

Imitation Learning

SotA Prediction model: Motion TRansformer (MTR and MTR++)



Shi, Shaoshuai, et al. "Motion transformer with global intention localization and local movement refinement." 2022. Shi, Shaoshuai, et al. "MTR++: Multi-agent motion prediction with symmetric scene modeling and guided intention querying." 2023.

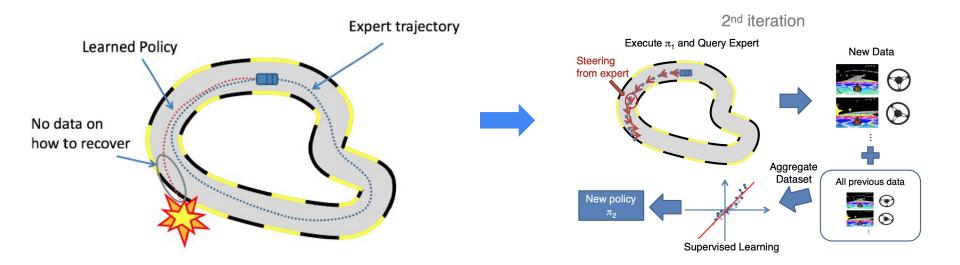
Imitation Learning

Pros:

→ Simple constructive algorithm scaling with data

Cons:

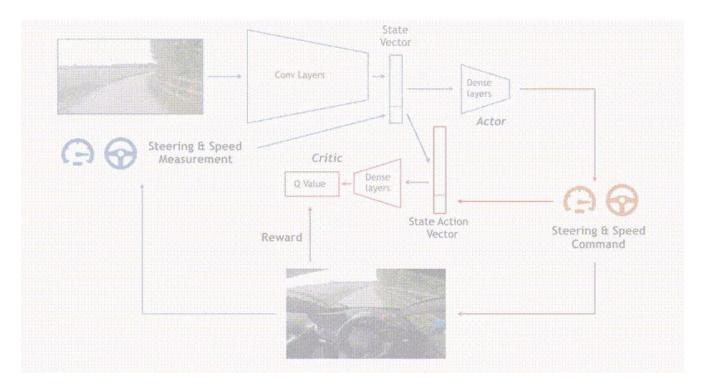
- → Hard to stay "in distribution" (error quickly accumulates)
- → Can be mitigated by Dataset Aggregation (DAgger) approach



Ross, Stéphane, Geoffrey Gordon, and Drew Bagnell. "A reduction of imitation learning and structured prediction to no-regret online learning." 2011.

Reinforcement Learning

Online, off-policy RL (DDPG) from 2018



Kendall, Alex, et al. "Learning to drive in a day." 2018.

Reinforcement Learning

Pros:

- → Adaptable to unseen scenarios
- Reasoning beyond imitation (hypothetical roll-outs)

Cons:

- → Hard to define rewards (human-like behavior)
- Need reliable infrastructure for reliable estimation at scale

IL+RL

Status Quo:

- Very good imitation-based models (for Prediction, Planning)
- Models can be of different nature (ML-based, heuristic-based, simple geometric roll-outs, LLM-based for high-level reasoning, etc)
- RL policies need to deal with either discretization of the action space or with approximations of the policy gradients

What if:

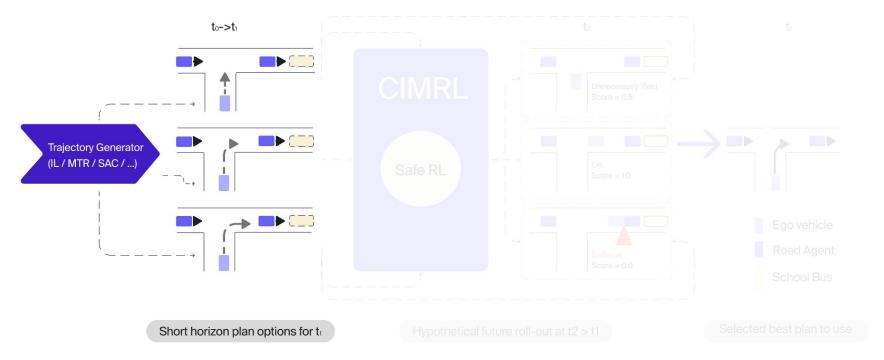
- We will re-use the imitation-based existing models, but
- Use RL algorithm to select from multiple IL generators

Plus:

We can concentrate on safety by doing hypothetical future roll-outs and remove / downvote dangerous plans, and provide behavior realism from IL

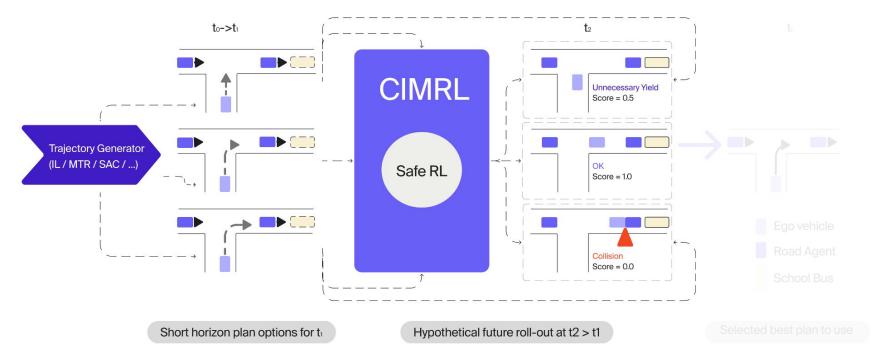


CIMRL: Combining IMitation and Reinforcement Learning



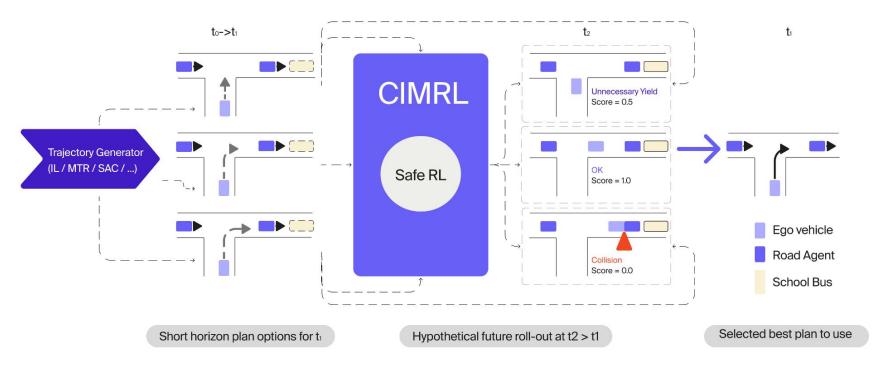
Booher, Jonathan, et al. "CIMRL: Combining IMitation and Reinforcement Learning for Safe Autonomous Driving." 2024. https://arxiv.org/abs/2406.08878

CIMRL: Combining IMitation and Reinforcement Learning



Booher, Jonathan, et al. "CIMRL: Combining IMitation and Reinforcement Learning for Safe Autonomous Driving." 2024. https://arxiv.org/abs/2406.08878

CIMRL: Combining IMitation and Reinforcement Learning

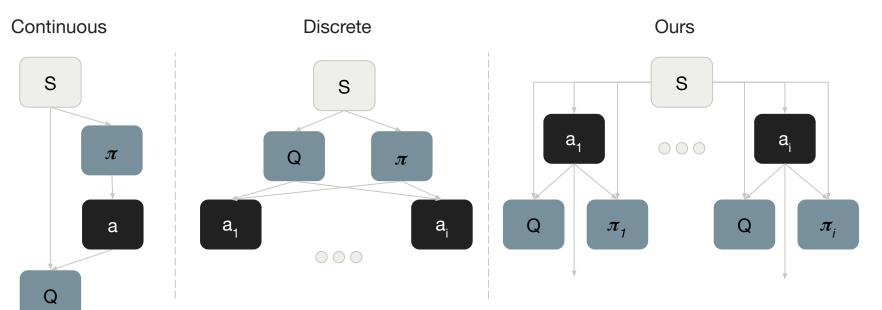


Booher, Jonathan, et al. "CIMRL: Combining IMitation and Reinforcement Learning for Safe Autonomous Driving." 2024. https://arxiv.org/abs/2406.08878

CIMRL: Scoring

One more (:wink:) combination of:

- → Continuous Action Space: able to provide the scoring for literally any planned trajectory
- → **Discrete** Action Space: able to provide the correct probability distribution on top of any finite set of traject



Haarnoja, Tuomas, et al. "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor." 2018.

Christodoulou, Petros. "Soft actor-critic for discrete action settings." 2019.

CIMRL: Advantages

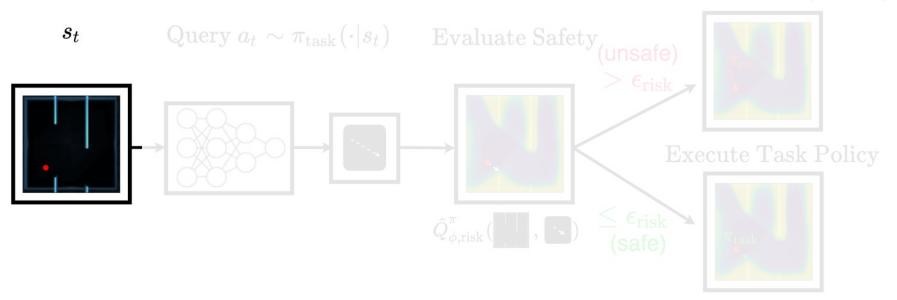
Scalability

→ Benefits from a lot of data which is directly improving IL-based methods

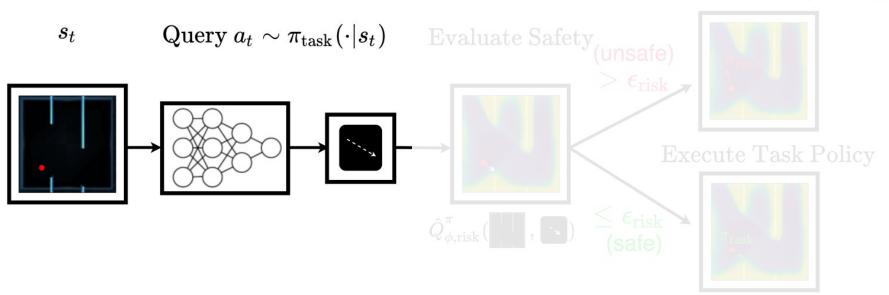
Flexibility

- → Can be used as a framework for incorporating literally any Prediction or Planning model
- → We can also incorporate the scores from those models as well!

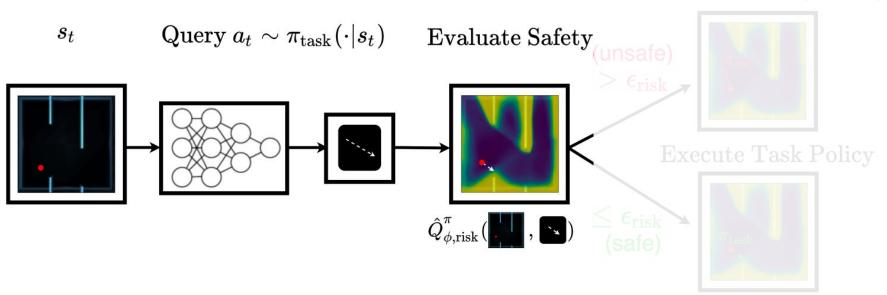
Execute Recovery Policy



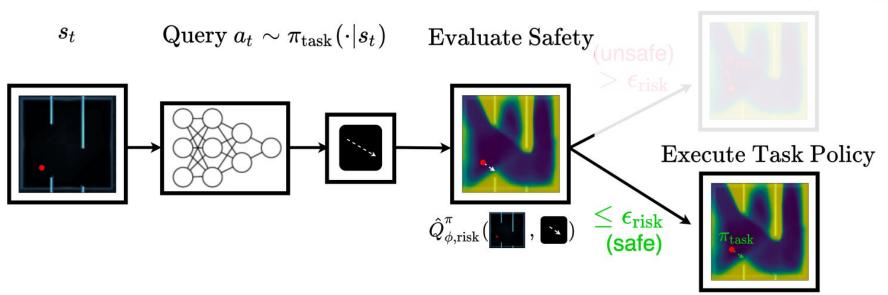
Execute Recovery Policy



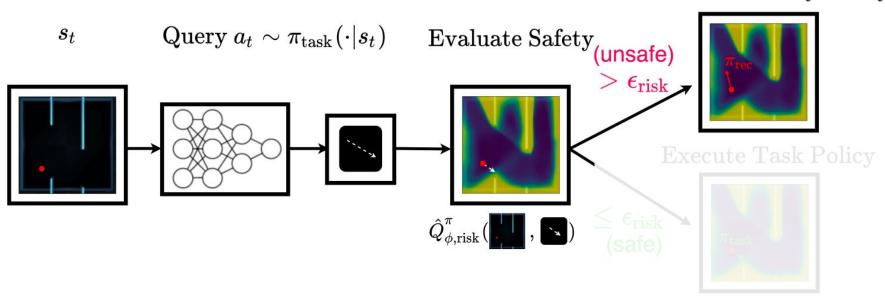
Execute Recovery Policy



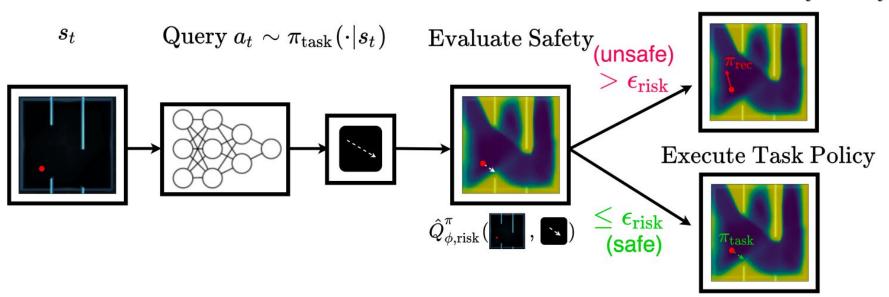
Execute Recovery Policy



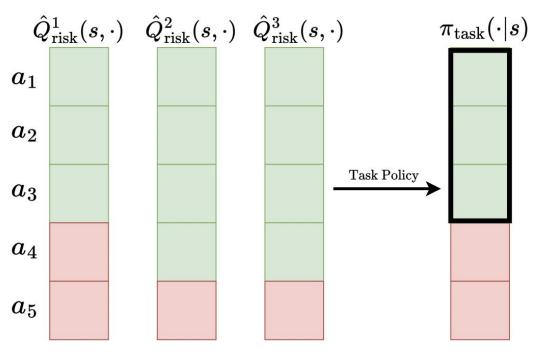
Execute Recovery Policy

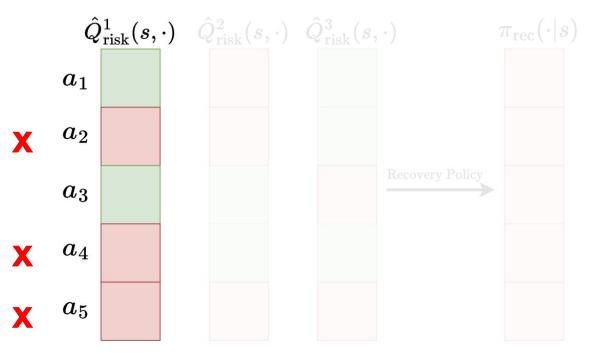


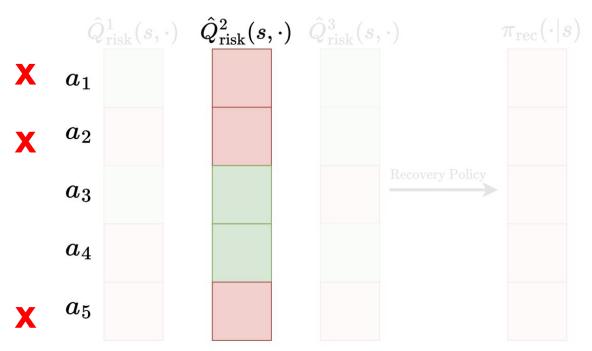
Execute Recovery Policy



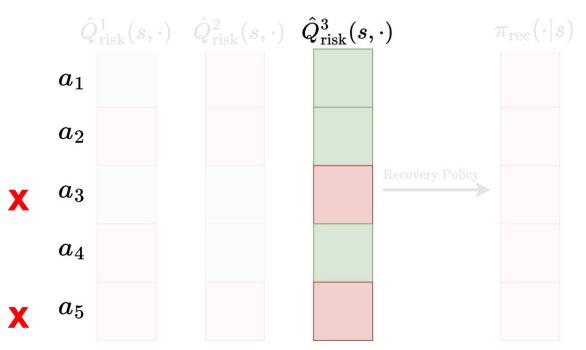
If there exist safe actions then sample from re-normalized task policy.





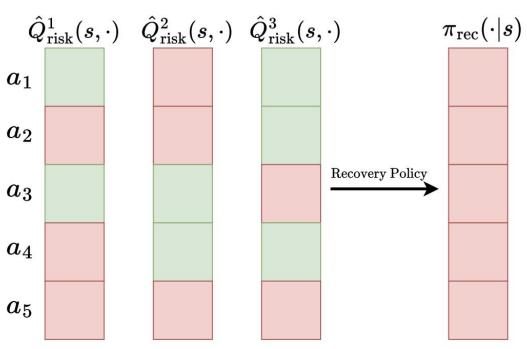


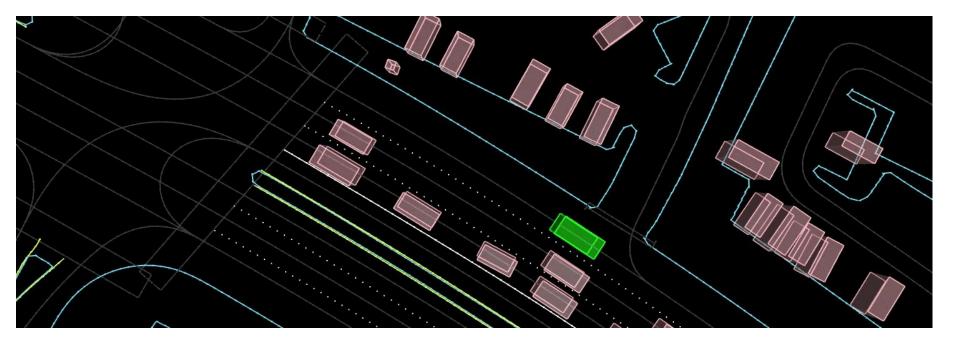
Constructing CIMRL Mixed Policy: Unsafe Case



Otherwise sample from recovery policy

Constructing CIMRL Mixed Policy: Unsafe Case





Closed-Loop Simulator

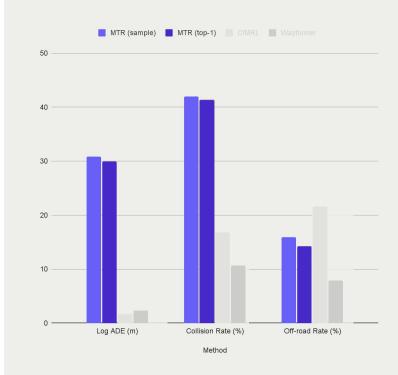
Waymax:

- → Can be used for training
- → Data-driven
- → TPU / GPU support

Closed-Loop Results: Waymax

- → Kinematic Feasibility: pretty meaningless for any Prediction-based method
- → Route progress ratio: do not have the access to route info (sdc_path)

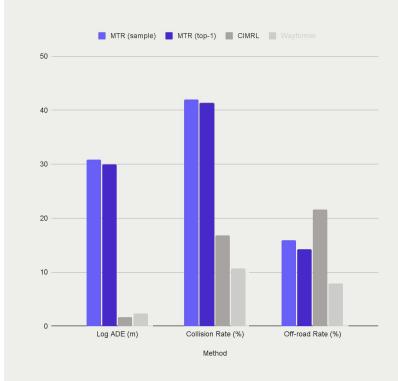
Using Waymax: No Sim Agents, Delta Action Space



Closed-Loop Results: Waymax

- → Kinematic Feasibility: pretty meaningless for any Prediction-based method
- → Route progress ratio: do not have the access to route info (sdc_path)

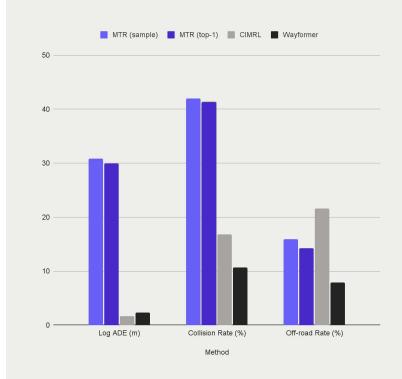
Using Waymax: No Sim Agents, Delta Action Space



Closed-Loop Results: Waymax

Wayformer has the access to route info :)

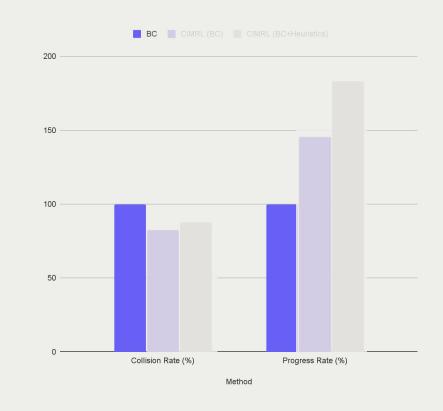
Using Waymax: No Sim Agents, Delta Action Space



Closed-Loop Results: In-house

- → Challenging interactive in-house scenes where log pose divergence is usually inevitable
- → Route progress ratio: makes sense
- → Log ADE: doesn't

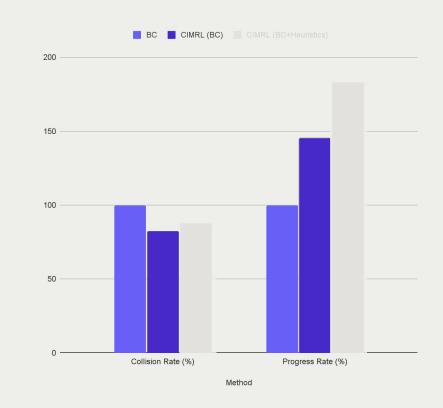
Using Internal data and Sim (Log replay)



Closed-Loop Results: In-house

- → Challenging interactive in-house scenes where log pose divergence is usually inevitable
- → Route progress ratio: makes sense
- → Log ADE: doesn't

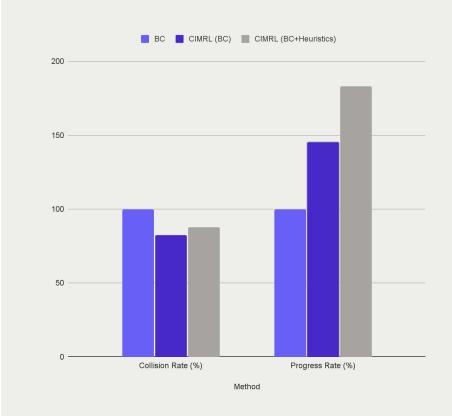
Using Internal data and Sim (Log replay)



Closed-Loop Results: In-house

- → Challenging interactive in-house scenes where log pose divergence is usually inevitable
- → Route progress ratio: makes sense
- → Log ADE: doesn't

Using Internal data and Sim (Log replay)



CIMRL: Limitations

... And still dependent on the quality of the underlying ego plan generation procedure.

(01)

Reward definition is not straightforward (but *mitigatable*)

02

Rare sparse events are challenging to learn (i.e. *collisions*) esp. for advanced planners

03

Sample inefficient – takes many simulation steps to learn (huge state-action space)

Conclusions

CIMRL is really scalable and flexible framework of combining paradigms

Learning selection provides long-horizon reasoning

There is no such a thing as "too much safety":(

New Horizons

New RnD direction in <u>FinTech</u> opens <u>now!</u>

If you feel comfortable to understand, implement, and push forward the Tech inside Finance - contact me with your CV!

https://petiushko.info/#contact

Thanks!