Safe Planning

In Autonomous Driving

DriveX (3rd Edition)

Workshop on Foundation Models for

V2X-Based Cooperative Autonomous Driving

In conjunction with ITSC 2025, Nov 18, Gold Coast, Australia

Contributors

Ashwin Balakrishna

Jonathan Booher

Ishan Gupta

Vladislav Isenbaev

Bo Li

Wei Liu

Aleksandr Petiushko

Khashayar Rohanimanesh

Taiqi Wang

Junhong Xu

Xuan Yang

Yu Yao

Jiawei Zhang

Autonomous Driving (AD)

- AD is one of the most complex and difficult tasks, both theoretically and practically
- Planning is a key focus regarding safety

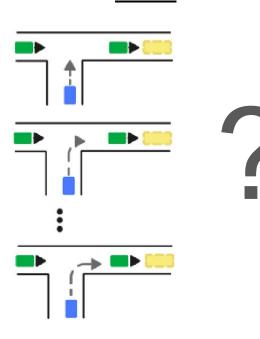
Image <u>source</u>

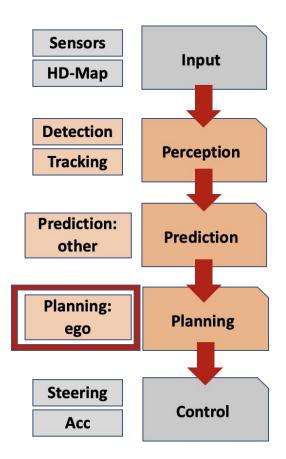
Safety of AVs on the road is crucial

How to choose / check the right plan?

Add a violation <u>checker!</u>

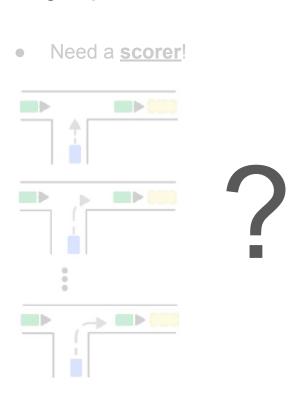
• Need a scorer!

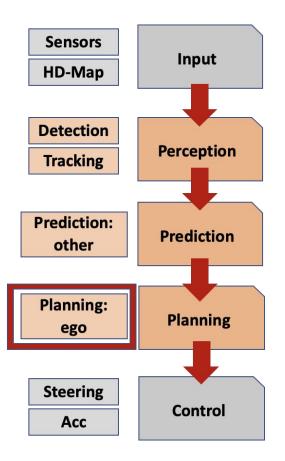




How to choose / check the right plan?

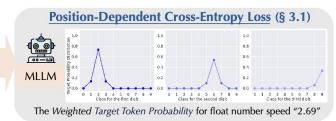
Add a violation <u>checker!</u>





SafeAuto: the Overall Approach¹

Multimodal Input: video, text



Tasks of SafeAuto

Task 1: High Level Action Query

[Current Context] + [Retrieved Context] Human: What is the action of ego car? LLM: The car is moving forward

LLM: The car is slowing to a stop

Task 2: High Level Justification Query

Human: Why does the ego car do this? **LLM**: for the red light at the intersection ahead.

Task 3: Low Level Action Query

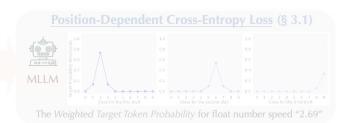
Human: *Predict the control signal of next frame*. **LLM**: Speed: 2.69 Course: 0.00

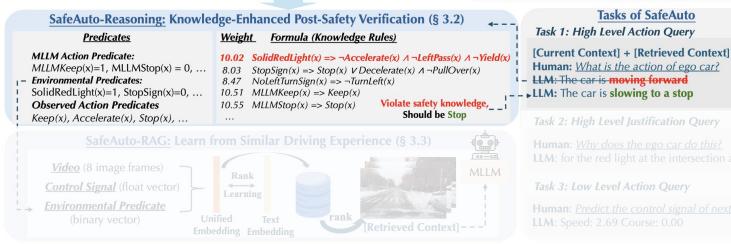
MLLM = multimodal large language model

SafeAuto: the Overall Approach¹

Multimodal Input: video, text

Current video <u>driving scenario</u>: <video> <u>Control Signal</u> before the current frame Sequence: Speed: [3.35, 3.26, 3.17, 3.08, 2.96, 2.87, 2.78] Curvature: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] Acceleration: [-0.92, -0.9, -0.88, -0.85, -0.82, -0.8, -0.77] Course: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]





MLLM = multimodal large language model

Markov Logic Networks

- Currently, most MLLMs are still data-driven
- Reliability and strict adherence to safety regulations are inevitable
- → Let's use Probabilistic Graphical Models to verify the safety
 - Markov Logic Networks
 (MLN) to combine:
 - Domain knowledge
 - Traffic rules

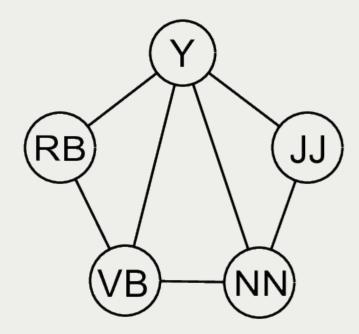


Image <u>source</u>

8

MLNs Details

- → MLN == a set of first-order logic formulas with an associated confidence weight w
 - w: to model uncertainty / deal with exceptions in real-world knowledge
 - Ex.: a traffic rule like "If there is a stop sign, then the vehicle should stop or decelerate" can be represented as the logical formula:
 - StopSign(x) \Rightarrow Stop(x) \lor Decelerate(x)

$$P(\mathrm{X}) = rac{1}{Z} \mathrm{exp} \left(\sum_{f \in F} \omega_f \sum_{a_f \in A_f} \phi_f(a_f)
ight)$$

where:

- X: set of all ground truth predicates
- Z: partition function
- $\phi_f(a_f)$: potential function for formula f with assignment a_f (=1 iff a_f)
- F: set of all formulas f
- A_f: set of all possible assignments to the arguments of formula f

)

MLN in AD

- → Predicates:
 - Unobserved U:
 - Vehicle should take (Stop, Accelerate, TurnLeft)
 - **Observed** O:
 - MLLM Action (MLLMStop, MLLMAccelerate, MLLMTurnLeft)
 - MLLMStop => Stop
 - Environmental (StopSign, SolidRedLight)
 - From video, using YOLOv8¹ trained on LISA²
 - + Historical Control Signal (HCSTurnLeft)

$StopSign(x) \Rightarrow$

 \Rightarrow Stop(x) \vee Decelerate(x) \wedge \neg PullOver(x)

Example of environmental *observed* predicate

MLN in AD - Process (1)

→ Inference

Obtain the most realistic unobservable
 U given the observable O using the
 trained MLN

→ Training

Obtain the weights $\mathbf{w_f}$ to maximize the P(U|O) with BDD-X¹/DriveLM² data

→ / Safety verification

After inferring the U based on O from MLN, if it contradicts MLLM's action (a potential safety violation / breach of critical traffic rules) => need to overwrite the high-level action query and re-prompt the MLLM again

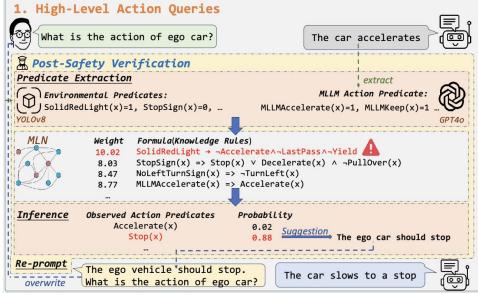
$$\mathcal{U}^* = \arg\max_{\mathcal{U}} P(\mathcal{U}|\mathcal{O})$$

 ω_f

MLN in AD - Process (2)

→ MLN

- Serves as a post-verification layer able to change the unsafe MLLM system initial suggestion
- Improving the overall trust to AD system



MLN in AD - Results

→ Ablation study on the impact of each module on the traffic rule violation rate of MLLM-predicted actions

Method	BDD-X	DriveLM
Base	11.64%	1.03%
PDCE	8.44%	1.46%
PDCE+RAG	5.90%	1.03%
PDCE+RAG+MLN	4.50%	0.75%

(lower the better)

DriveLM use case

Mothod	High-Level Behavior			Motion
Method	Accuracy	Speed	Steer	ADE
Base	60.58	64.57	80.29	0.86
PDCE	63.21	67.88	79.27	0.85
PDCE+MLN	66.86	71.39	80.29	0.85
PDCE+RAG	74.01	79.27	81.61	0.84
PDCE+RAG+MLN	74.61	79.85	81.91	0.84

(higher the better)

(lower the better)

MLN in AD: Outcomes

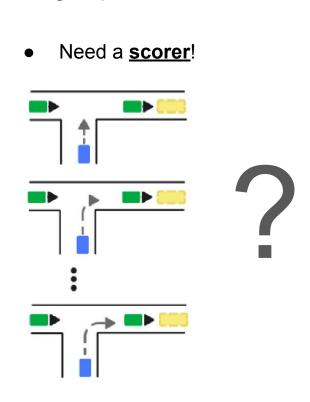
- Markov Logic Network provides an additional layer of safety in AD
- Limitations:
 - Need to understand the Markov-based reasoning
 - Doesn't work equally best for every dataset
 - o One more ML model

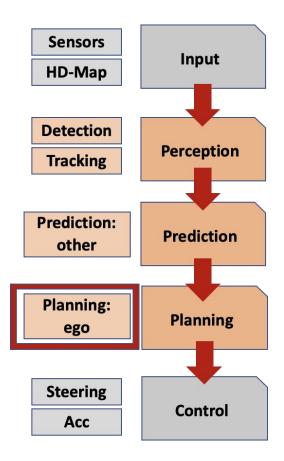
BDD-X use case

Method \ Metric	Action / Meteor	Action / Accuracy	Justification / Meteor
Base	29.2	61.75	13.2
PDCE	29.3	61.94	13.2
PDCE+MLN	29.4	62.97	13.2
PDCE+RAG	35.3	91.00	13.9
PDCE+RAG+WLN	35.5	92.18	14.0

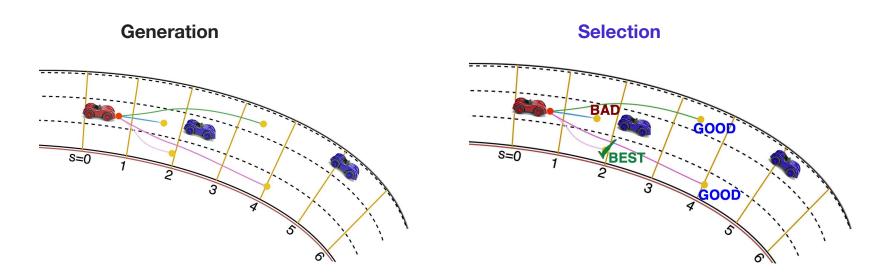
How to choose / check the right plan?

Add a violation <u>checker!</u>





Plan Generation vs Plan Selection



Plan Generation vs Plan Selection (Image source)

Let's **combine** two worlds!

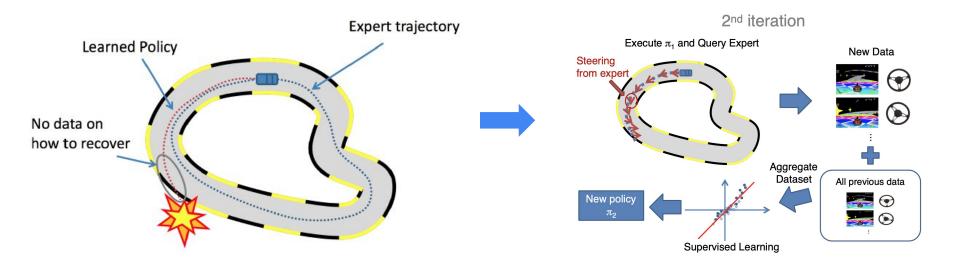
Imitation Learning

Pros:

→ Simple constructive algorithm scaling with data

Cons:

- → Hard to stay "in distribution" (error quickly accumulates)
- → Can be mitigated by Dataset Aggregation (DAgger) approach



Ross, Stéphane, Geoffrey Gordon, and Drew Bagnell. "A reduction of imitation learning and structured prediction to no-regret online learning." 2011.

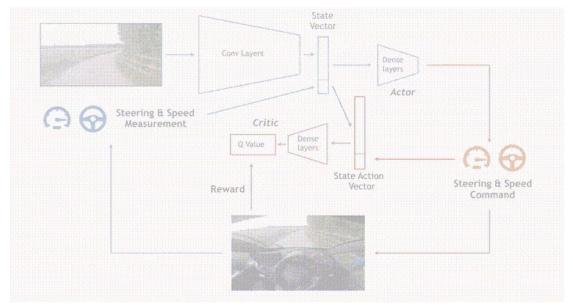
Reinforcement Learning

Pros:

- → Adaptable to unseen scenarios
- Reasoning beyond imitation (hypothetical roll-outs)

Cons:

- → Hard to define rewards (human-like behavior)
- → Need reliable infrastructure for trustable estimation at scale



Online, off-policy RL (DDPG) from 2018

IL+RL

Status Quo:

- Very good imitation-based models (for Prediction, Planning)
- Models can be of different nature (ML-based, heuristic-based, simple geometric roll-outs, LLM-based for high-level reasoning, etc)
- RL policies need to deal with either discretization of the action space or with approximations of the policy gradients

What if:

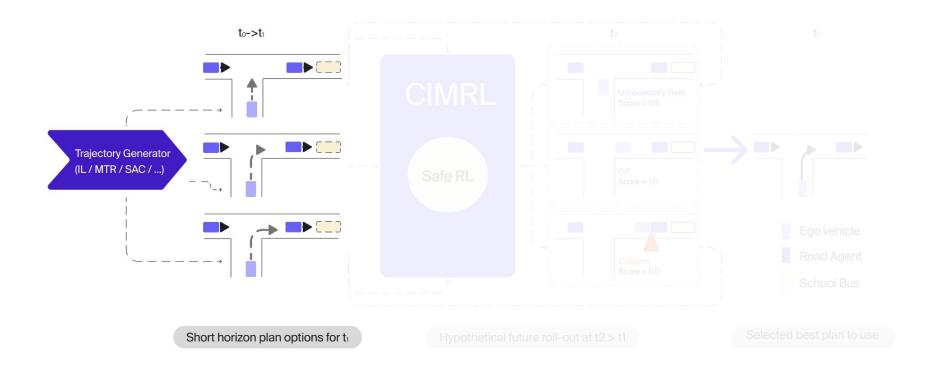
- We will re-use the imitation-based existing models, but
- Use RL algorithm to select from multiple IL generators

Plus:

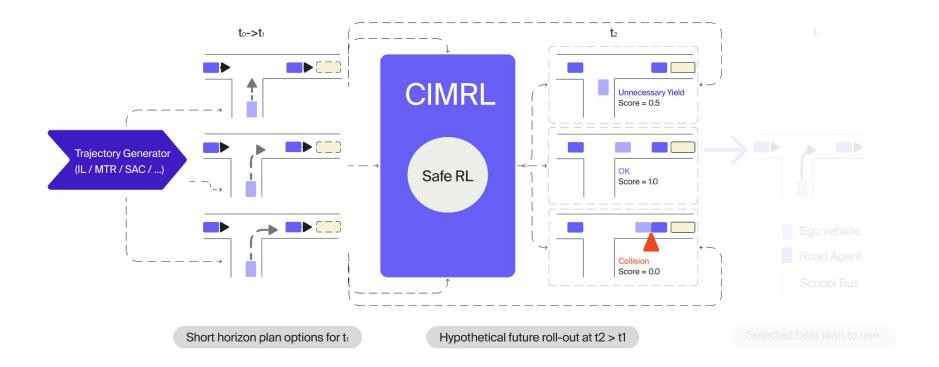
We can concentrate on safety by doing hypothetical future roll-outs and remove / downvote dangerous plans, and provide behavior realism from IL



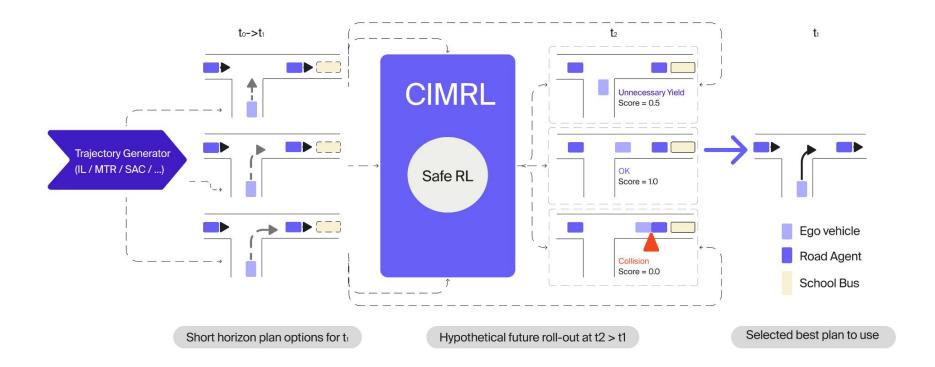
CIMRL¹: Combining IMitation and Reinforcement Learning

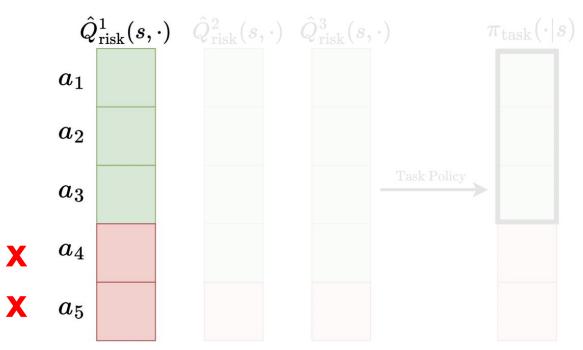


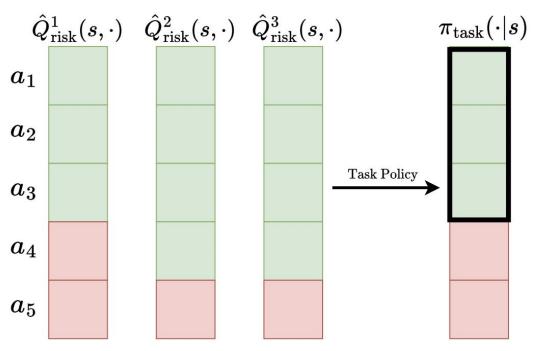
CIMRL¹: Combining IMitation and Reinforcement Learning

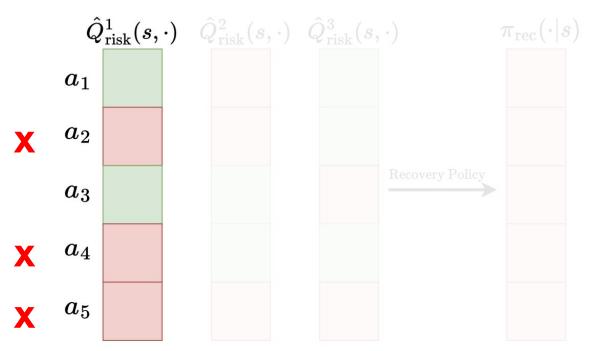


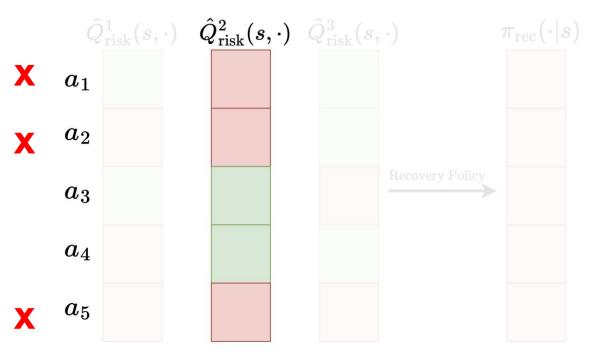
CIMRL¹: Combining IMitation and Reinforcement Learning

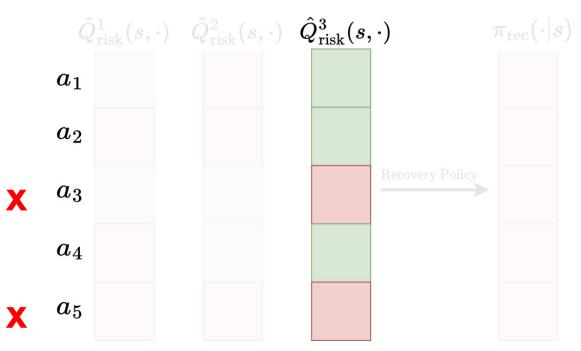




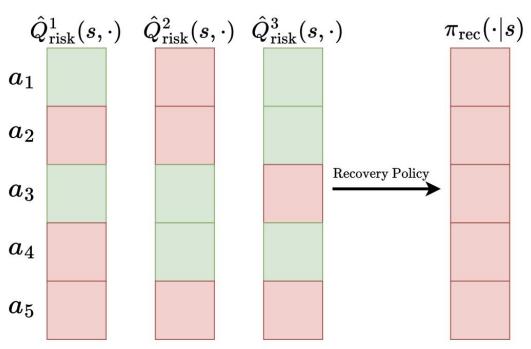


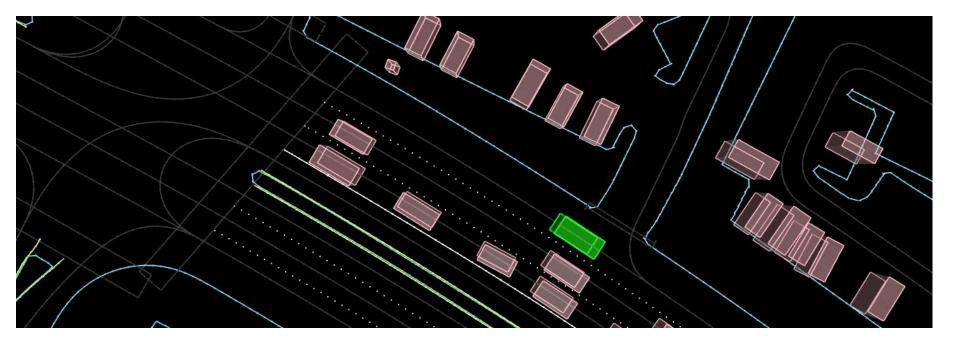






Otherwise sample from recovery policy





Closed-Loop Simulator

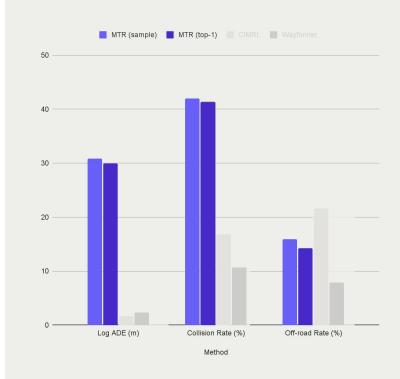
Waymax:

- → Can be used for training
- → Data-driven
- → TPU / GPU support

Closed-Loop Results: Waymax

- → Kinematic Feasibility: pretty meaningless for any Prediction-based method
- → Route progress ratio: do not have the access to route info (sdc_path)

Using Waymax: No Sim Agents, Delta Action Space



Closed-Loop Results: Waymax

- → Kinematic Feasibility: pretty meaningless for any Prediction-based method
- → Route progress ratio: do not have the access to route info (sdc_path)

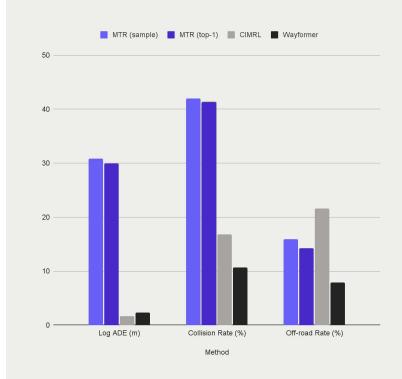
Using Waymax: No Sim Agents, Delta Action Space



Closed-Loop Results: Waymax

Wayformer has the access to route info :)

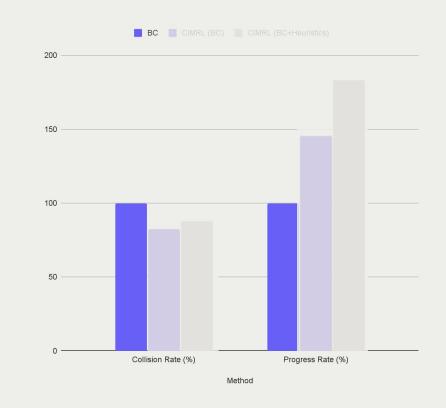
Using Waymax: No Sim Agents, Delta Action Space



Closed-Loop Results: In-house

- → Challenging interactive in-house scenes where log pose divergence is usually inevitable
- → Route progress ratio: makes sense
- → Log ADE: doesn't

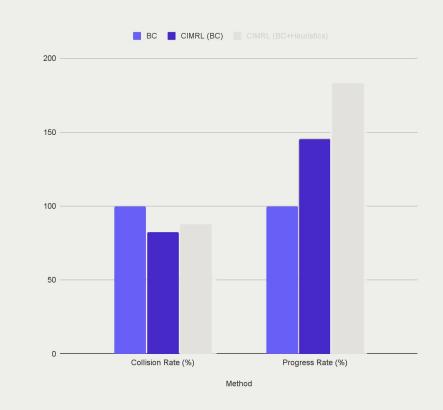
Using Internal data and Sim (Log replay)



Closed-Loop Results: In-house

- → Challenging interactive in-house scenes where log pose divergence is usually inevitable
- → Route progress ratio: makes sense
- → Log ADE: doesn't

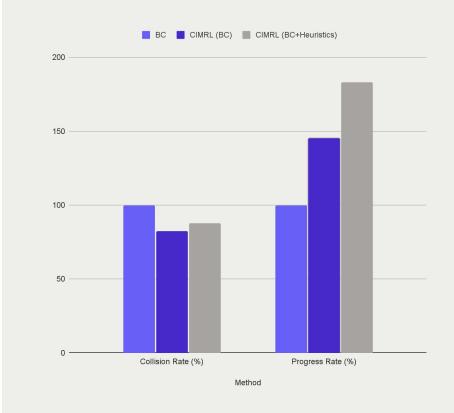
Using Internal data and Sim (Log replay)



Closed-Loop Results: In-house

- → Challenging interactive in-house scenes where log pose divergence is usually inevitable
- → Route progress ratio: makes sense
- → Log ADE: doesn't

Using Internal data and Sim (Log replay)



Conclusions

Logic-based reasoning helps with corner cases extractable from the rule-based KB

Learning selection provides long-horizon reasoning

There is no such a thing as "too much safety":(

Thanks!