Dr.Alex
Dr.Alex
Bio
Industry
Academia
Education
Publications & Patents
Talks
Posts
Projects
Demos
Blog
Contact
CV
Light
Dark
Automatic
Image Transformations
Certified Robustness: Fundamentals and Challenges
Overview of classical and State-of-the-Art approaches to certify ML models’ robustness.
Jan 24, 2023 6:00 PM
NTR LABS Webinars
Aleksandr Petiushko Александр Петюшко
Slides
Video
Certified Robustness via Randomized Smoothing over Multiplicative Parameters of Input Transformations
A novel method of certified robustness using Rayleigh dostribution for smoothing when transformations consist not additive but multiplicative group.
Nikita Muravev
,
Aleksandr Petiushko Александр Петюшко
PDF
Cite
Video
Source Document
DOI
arXiv
CC-Cert: A Probabilistic Approach to Certify General Robustness of Neural Networks
A theoretical approach to estimate the certified robustness tested on different image transformations.
Mikhail Pautov
,
Nurislam Tursynbek
,
Marina Munkhoeva
,
Nikita Muravev
,
Aleksandr Petiushko Александр Петюшко
,
Ivan Oseledets
PDF
Cite
Poster
Source Document
DOI
arXiv
AdvHat: Real-World Adversarial Attack on ArcFace Face ID System
A practical approach to generate forehand printed patch to fool the best FaceID system - Arcface - in real world.
Stepan Komkov
,
Aleksandr Petiushko Александр Петюшко
PDF
Cite
Code
Poster
Slides
Video
Source Document
DOI
arXiv
Demo
On Adversarial Patches: Real-World Attack on ArcFace-100 Face Recognition System
Two versions of a real-world adversarial attack (nose patch and adversarial glasses) for a top FaceID system - Arcface.
Mikhail Pautov
,
Grigorii Melnikov
,
Edgar Kaziakhmedov
,
Klim Kireev
,
Aleksandr Petiushko Александр Петюшко
PDF
Cite
Source Document
DOI
arXiv
Real-world Attack on MTCNN Face Detection System
Two versions of a real-world adversarial attack (cheek’s patches and medicine mask) for a very efficient MTCNN face detector.
Edgar Kaziakhmedov
,
Klim Kireev
,
Grigorii Melnikov
,
Mikhail Pautov
,
Aleksandr Petiushko Александр Петюшко
PDF
Cite
Code
Source Document
DOI
arXiv
Demo
Cite
×